• RE-188

2024년 공공부문 AI 도입현황 연구

날짜2025.04.30
조회수128
글자크기
요약문 상세
  • 요약문
    • 1. 제 목 : 공공부문 AI 도입현황 연구
    • 2. 연구 배경 및 목적
    • 인공지능 기술의 발전에 따라 공공분야에서도 인공지능 도입 및 활용 범위의 확대가 업무 생산성 및 효율성 개선과 대민서비스 향상에 기여할 것으로 전망한다.
    • 이러한 기대감 속에 현 정부는 다양한 인공지능 정책 추진을 통해 인공지능 도입과 활용에 대한 중요성을 강조하고 있으며, 향후 정책 개선 요인을 도출하는 차원에서 공공부문의 인공지능 도입현황에 대한 기초 자료를 마련하는 것은 필수적인 요소이다.
    • 본 연구는 지난 10년간 조달청의 입찰정보와 계약정보를 활용하여 공공부문 인공지능 도입 현황을 보다 객관적이고 사업 단위까지 세밀하게 조사를 수행한다. 또한 기관들이 인공지능을 도입하는 과정에서 발생하는 이슈를 조사하고 활용 확대를 위한 정책적 시사점을 도출하는 것이 본 연구의 목적이다.
    • 이번 연구는 2023년에 개발한 조달 데이터를 사용한 공공부문 AI 도입 현황조사 방법론의 문제점을 개선하고, 인터뷰 대상을 확대해 공공기관 유형별로 겪고 있는 공통 이슈를 도출하는 것에 주안점을 두고 있다.
    • 국내 공공부문의 AI 도입현황 조사 연구는 크게 2개 부문으로 나뉜다. 우선 도입현황 조사 부문은 지난 10년(2014∼2023년)간 401개 공공기관의 ICT시스템 관련 용역계약 정보와 제안요청서, 과업지시서 등 첨부문서를 조달청의 조달정보개발포털을 통해 수집한다. 수집된 공공조달 데이터에서 AI 관련 사업은 텍스트 마이닝 기법을 사용하여 입찰 제안서(RFP) 세부 내용에 인공지능(AI) 관련 키워드가 포함되어 있는지 여부로 선별한다. 최종 선별된 인공지능 용역계약의 첨부문서를 분석해 추진단계, 활용 분야, 용도, 기술유형 등 부가 정보를 추가한 DB를 구축한다. 구축된 DB를 활용해 연도별 변화추이, 기관구분별 특성, 발주 및 낙찰 기관 등 다양한 관점에서 공공부문의 AI 도입 현황을 조사한다. 이상과 같은 조사 프로세스는 전년과 동일하다. 이번 연구에서는 AI 키워드를 8개에서 100개로 확대해 누락된 사업을 최소화하고 부가 정보 분석 시 키워드 활용을 통해 객관성을 높이는 것에 주안점을 두었다.
    • 다음은 공공기관의 인공지능 도입 활성화 방안 도출을 위한 사례분석이다. 앞의 현황조사 분석 결과를 토대로 공공기관을 유형화한 후 구축된 조달공고 DB와 제안요청서(RFP) 등으로부터 유형을 대표할 수 있는 용역을 선정하였다. 선정된 용역을 수행했던 담당자와 심층인터뷰를 진행하고, 이를 종합해 기획 → 구축 → 유지관리 단계에서 발생하는 유형별 이슈와 시사점을 도출하였다.
    • 3. 연구 결과
    • 가. 도입현황 조사
    • 과거 10년(2014∼2023년)간 공공부문 조달계약 중 인공지능(AI) 도입 계약 건수는 5,891건이다. 401개 공공기관의 60.6%인 243개 기관이 인공지능을 도입한 것으로 나타났다. 조사 대상 기관 중 자체적인 ICT 시스템을 보유하지 않은 소규모 기관이 다수 포함되어 있어 이들을 제외하면 공공기관의 실질 도입률은 크게 높아질 것이다.
    • (연도별 추이) 공공기관의 인공지능 도입은 2016년 알파고 쇼크 이후 매년 빠르게 증 가하였다. 인공지능 계약은 2014년 134건에서 2023년 1,033건으로 7배 가까이 증가했으 며, 금액은 2,823억원에서 1조 3,279억원으로 늘어났다. 이에 따라 공공기관의 전체 ICT 관련 용역 계약 중 인공지능이 차지하는 비중도 금액 기준으로 2016년 3.33%에 불과했 으나 점진적으로 증가하여 2020년 이후 10% 수준으로 늘어났다.
    • (추진단계) 2017년부터 인공지능 모델과 기술을 개발하는 연구단계와 시스템도입을 위한 ICT컨설팅 단계가 빠르게 늘어났다. 기존 시스템 고도화를 포함한 구축 단계는 2019∼20년 2년간 빠르게 증가한 후 연간 500건 정도를 유지하고 있다. 반대로 유지관리 단계는 2017∼20년 사이 비중이 크게 줄었다가 점차 늘어나고 있다.
    • (정책 분야) 정책 분야별로는 전자정부, 민원 서비스 등에 관련된 시스템 수요가 많은 일반공공행정 분야가 지속적으로 전체의 20% 이상의 가장 높은 비중을 차지하고 있다. 다음으로 공공질서 및 안전(범죄예방, 재난재해 대응 등) 16.2%, 교통/물류 (지능형 교통망 등) 11.3%, 문화/체육/관광(전자도서관, 문화재 안내 등) 6.7%, 보건 (복지사각지대 발굴 등) 4.8% 순으로 많이 도입되었다.
    • (활용용도) 연도별 활용용도는 전체적으로 대민서비스 44.8%, 업무효율화 55.2%로 업 무효율화 비중이 10% 정도 높다. 2016년까지는 대민서비스 비중이 높았으나, 이후 업 무효율화 용도 도입이 빠르게 늘어나 2019년 60.3%로 정점을 기록하고 점차 낮아지고 있는 추세이다. 이러한 결과는 공공기관의 인공지능 도입이 딥러닝 등장 초기에는 주 로 내부의 업무 수행 역량을 높이기 위한 목적으로 추진되었으나 2020년대 들어서는 챗봇, 추천시스템 등의 기술이 급속히 발전하면서 점차 대민서비스를 위한 인공지능 도입이 증가한 결과이다.
    • (기술유형) 기술유형별로 살펴보면 전체적으로 언어지능(37%), 전문가시스템(34.7%), 시각지능(19.6%) 순으로 과제가 많이 진행되었고, 일부 과제는 기술을 복합적으로 사용하였다. 언어지능의 경우 초반 규칙 기반의 TTS, STT 등의 과제가 많아 가장 높은 비중을 차지했으나 점차 축소되고 있다. 대신, 전문가시스템은 매년 큰 폭으로 증가하여 2022년 전체 용역 중 45%로 가장 높은 비중을 차지하고 있다.
    • (적용기술) 과거 인공지능은 장애인의 홈페이지 접근성 제고를 위한 TTS 기술과 문서의 디지털화를 위한 OCR 기술에 주로 적용됐었다. 아래 표에서 2016년까지 수치를 보면 2개 기술이 다른 키워드에 비해 압도적으로 많다. 하지만 2017년부터 ‘기계학습’,‘딥러닝’의 적용이 급하게 증가하면서, TTS와 OCR 비중은 빠르게 감소한다. 한편, 챗봇은 2017년 8건을 시작으로 2020년부터 급속히 확산되어 2023년 312건으로 가장 많이 등장하는 키워드가 되었다. 또한 음성인식과 비정형 데이터 처리 기술이 발전하면서 STT와 자연어처리 적용도 점진적으로 확대되고 있다.
    • (기관구분별) 기관 구분별 계약 건수는 국가기관(38.9%), 지자체(31.2%), 준정부기관(16.2%), 기타공공기관(12.8%) 순으로 많고, 총 계약금액은 국가기관(50.8%), 준정부기관(20.0%), 지자체(17.5%), 기타공공기관(9.7%) 순으로 많다. 국가기관과 준정부기관의 건당 평균계약금액은 17억원 정도로 지자체의 평균 7.5억에 비해 2배 이상 크다. 이는 예산 규모가 작은 기초 지자체의 계약도 포함된 영향이 있다.
    • 공기업을 제외한 4개 공공기관 유형 중 국가기관, 준공공기관, 기타 공공기관 등 3개 유형의 기관은 정부 부처를 중심으로 밀접하게 연결되어 있어 유형 간 차이가 크지 않다. 반면 지자체의 경우 중앙정부와 독립적으로 정책이 수립·결정되기 때문에 인공지능 기술 도입의 분야, 목적, 절차 등 여러 측면에서 다른 기관과 차이가 크다.
    • 지자체의 경우 활용 정책분야 중 공공질서 및 안전과 교통/물류의 비중이 중앙정부 기관과 비교해 압도적으로 높다. 또한, 추진단계 중 구축과 유지보수 단계가 90% 이상으로 대부분을 차지한다. 대형 구축 사업이 적고 주민 생활에 밀착된 문제를 해결하는 1억원 이하의 소규모 사업이 많은 부분을 차지하고 있다. 또한, 지자체는 기계학습, 딥러닝의 빈도는 상대적으로 많이 낮으며, 대신 과거 장애인 접근성 향상을 위해 사용되던 TTS 비중은 높다.
    • (발주기관) 국가기관에서는 건수 기준으로 기상청, 문화체육관광부, 행정안전부 순으로 인공지능 시스템을 많이 도입했다. 대규모 시스템을 보유한 대법원, 법무부, 과학기술정통부(우정사업본부), 국방부, 국세청 등이 투자금액에서 상위 기관에 위치하였다.
    • 자치체에서는 경기도가 건수(502건), 금액(4,205억원)에서 다른 지자체와 큰 차이를 보이며 가장 적극적으로 인공지능을 도입하고 있다. 경기도는 많은 인구와 복잡한 교통 문제를 가지고 있어 교통 관련 시스템 구축과 민원처리 관련 대민서비스 과제를 많이 수행하였다. 경기도 외에 서울특별시와 경상남도, 경상북도가 건수와 계약 금액에서 상위권을 차지하고 있다.
    • (낙찰기업) 공공부문 인공지능 도입 계약 5,891건의 공급기업은 총 1,788개이고 평균 계약금액은 13.4억원이다. 이를 조달정보개방포탈의 기업구분에 따라 나누어 살펴보면, 대기업(113.4억원), 중견기업(66.6억원), 중소기업(8.1억원), 비영리 중소기업(6.7억원), 비영리법인(2.4억원) 순으로 기업의 규모에 따라 평균계약금액이 작아지는 것을 확인할 수 있다. 한편, 전체 인공지능 건수 중에 중소기업이 88.6%의 계약을 낙찰받은 것으로 나타났다.
    • 나. 사례분석
    • 중앙정부 기관(국가기관, 준공공기관, 기타 공공기관)과 지자체는 인공지능 도입 환경, 사업구조, 대상 및 목적 등 서로 다른 특성을 가지고 있어서 본 연구에서는 중앙정부 기관과 지자체로 유형화했다. 또한, PoC(Proof of Concept) 사업은 최신 인공지능 기술 도입, 예산확보, 내부 공감대 형성, 구축 방향 설정 등에 중요한 영향을 미치기 때문에 별도의 유형으로 분리해 사례조사를 수행하였다. 대형 IT 시스템이 많은 중앙정부 기관 은 기존 시스템 고도화 사례를 중심으로 했으며, 지자체는 특정 지역 문제 해결을 위 한 사례 위주로 조사 대상을 선정하고 19개 사례에 대해 심층인터뷰를 진행했다.
    • (중앙정부 유형) 중앙정부 유형의 주요 이슈 중 많은 부분은 AI 전문인력 부족과 관 련 제도의 경직성에 기인한다. 기관 내부 AI 전문인력과 역량 부족으로 인공지능 시스 템 도입을 통해 얻고자 하는 목적, 목표, 계획 등이 구체적이지 않고 현실성이 떨어지 는 경우가 많고, 구축 과정에서 발생하는 다양한 문제에 대해 의사결정이 잘 이루어지 지 않고 있다. 그리고 인공지능 시스템의 성능을 결정하는 데이터 사전 준비도 미흡했 다.
    • 제도 측면에서는 대형 사업의 경우 ISP사업에 경험이 많은 대기업 참여가 불가하여 인공지능 기술 내용이 전문적이지 않고 결과물이 활용성이 낮았던 사례가 있었다. 공 공정보화 사업 기간은 1년과 3년 2가지 밖에 없는데, 1년 사업의 경우 내부 절차와 조 달청 입찰 및 계약 과정을 마치는데 통상 6개월 정도 소요되어 실제 구축 시간 확보에 많은 기관들이 어려움을 겪고 있다. 그리고 몇몇 기관은 재학습 비용을 추가해 유지보 수 예산을 신청했으나 기재부 심사에서 삭감되었다고 응답했다.
    • (지자체 유형) 지자체 사업은 예산 규모가 작기 때문에 중소기업만 참여가 가능하고, 지방계약법에 따라 일정 금액 이하는 해당 지역 기업만 응찰이 가능하다. 그래서 AI기 업이 집중되어 있는 수도권을 제외하면 AI 기술과 경험을 갖춘 개발 기업을 찾는데 어 려움이 있었다. 특히 안내로봇 등 수요는 많고 공급 기업이 적은 분야는 상대적으로 한정된 예산 때문에 우수 기업과 계약이 어려운 상황이다. 그리고 공급 중소기업의 파 산, 잦은 담당자 교체 등의 사유로 구축 및 유지보수에 차질이 발생하는 경우도 많았 다.
    • (PoC사업 유형) PoC과제를 수행했던 기업이 지적한 주요 이슈는 대부분 사업이 실제 성능을 테스트할 수 있는 파일럿 테스트 단계까지 진행되지 못하고 모델 개발에 그치 고 있다는 것이다. 이 외 하드웨어 할당, 데이터 수집 시간 등에 대한 수요기관 지원 부족으로 어려움을 겪었다.
    • 4. 결론
    • 조달 정보를 사용한 현황조사와 사례분석을 종합하여 도출한 국내 공공부문 인공지능 활용을 촉진하기 위한 정책적 제언은 다음과 같다.
    • 첫째, 체계적인 AI 전문인력 확보 및 역량 강화 전략 추진이다. 교육, 채용 등 AI 전문인력 확보를 위한 노력만으로는 한계가 있으며, 인공지능 활용과 구축 경험이 축적되어 기관 구성원 전체가 AI에 대한 이해와 지식이 높아져야 한다. 이를 위해 체계적이고 단계적인 도입 전략으로 기관 내부의 AI 역량과 성공 가능성을 동시에 높여야 한다. 그리고 다양한 문제에 대해 여러 가지 모델을 만들고 검증하는 PoC 사업을 적극 추진해야 한다. 내부 AI 역량 강화와 함께 전문가 중심의 신속한 의사결정 체제의 확립이 중요하다.
    • 둘째, AI 인프라 중심의 사업 추진이 필요하다. 기존 시스템과 대별되는 인공지능의 가장 큰 특징은 데이터가 미치는 영향이다. 확보된 데이터의 종류, 품질, 양 등에 따라 시스템의 성능, 구축 기간, 예산 등이 크게 차이가 난다. 그리고 데이터 관련 이슈는 기획 → 구축 → 유지관리의 전체 프로세스에 발생하기 때문에 사전에 충분한 고려와 대비가 필요하다. 또한, 인공지능 시스템은 학습할 때와 운영할 때 필요한 컴퓨팅 파워의 편차가 상당히 크다. 구축 및 재학습에 필요한 컴퓨팅 파워를 고려하여 외부 클라우드 서비스 이용을 포함한 HW 확보 계획을 수립해야 한다.
    • 셋째, 디지털서비스 전문계약제도 활용 확대가 필요하다. 2020년 시행된 디지털서비스 전문계약제도는 복잡한 조달 계약 절차를 간소화해 클라우드 방식으로 공공기관이 신속하게 IT 서비스를 도입할 수 있게 만든 것이다. 디지털서비스 전문계약 제도의 장단점에도 불구하고 인공지능 관점에서 보면, 커스트마이징 요소가 적고 사업기간이 1년인 정보화 사업은 긍정적으로 검토할 필요가 있다. 특히 지자체의 경우 유사한 사업이 많고 우수한 공급기업을 찾기 힘들기 때문에 이 제도의 활용 효과가 클 것으로 예상된다. 그리고 Hyper CloverX(NAVER), 에이닷(SKT), 믿:음(KT) 등 민간의 우수한 초거대 AI 서비스 활용을 통해 공공기관의 인공지능 도입과 혁신적인 공공서비스 창출을 가속시킬 수 있을 것으로 생각된다.
    • 마지막으로, 인터넷 소프트웨어 분야에서는 뇌-컴퓨터 인터페이스, AI 기반의 디자인 시스템, 데이터 스토리텔링 등이 사용자 경험과 참여를 증진시킬 것이다. 이 기술들은 데이터의 가치를 극대화하고, 사용자에게 더 풍부하고 유익한 정보를 제공할 것으로 기대된다. 이러한 유망 기술들은 산업 전반에 걸쳐 혁신을 촉진하며, 기업과 조직의 경쟁력을 강화하는 동시에 사용자의 삶의 질을 개선하는 데 기여할 것이다.
    • 5. 정책적 활용 내용
    • 본 연구 결과는 대한민국 SW산업의 진흥을 위한 전략 수립에 필수적인 정보를 제공한다. 정부 관계자들은 이러한 결과를 기반으로 SW 지원정책 분야의 우선순위를 결정하고 향후 연구개발과 사업화를 지원할 수 있는 방향을 설정하는 데 참고가 될 것이다. 또한 SW산업 및 결합기술과 관련된 진흥사업을 수행하는 전담기관들의 연구개발 사업기획의 방향성을 제시하는 데 참고자료로 활용될 것이다.
    • 6. 기대효과
    • 본 연구 결과는 산업, 정부, 교육 및 연구기관 측면에서 각각 시사점을 제공할 수 있을 것이다. 첫째, 산업계에는 SW유망기술, 유망기술과 시너지를 낼 수 있는 결합기술, 활용분야 등을 제시함으로써 기술 개발 및 사업 재편에 대한 전략적 방향설정에 활용할 수 있을 것이다. 나아가 본 연구결과를 토대로 효율적인 기술 투자와 개발을 진행하여 성공적인 비즈니스 모델을 형성할 수 있을 것으로 기대한다. 둘째, 정부차원에서는 연구 결과를 기반으로 SW유망기술 개발과 확산을 촉진하는 정책 수립에 활용할 수 있을 것이다. 이는 디지털 변혁에 선도적 정책지원으로 기술패권에서 우위를 선점하는 데 기여할 수 있을 것이다. 마지막으로 본 연구의 결과는 대학 및 연구 기관에게 유망 기술에 기반한 교육 및 훈련 프로그램을 개발과 SW분야의 연구개발 활동의 방향성을 수립하는 데 활용할 수 있는 기반자료가 될 것이다.
목차 상세
    • 제1장 서 론
    • 제1절 연구 배경 및 목적
    • 제2절 연구 내용 및 방법
    • 제2장 인공지능 도입 현황조사 프로세스
    • 제1절 조사 설계
    • 제2절 공공부문 AI 도입 현황 DB 구축
    • 제3절 용역계약 데이터 분류
    • 제3장 공공부문 인공지능 도입 현황
    • 제1절 연도별 인공지능 도입 현황
    • 제2절 기관 구분별 인공지능 도입 현황
    • 제3절 발주 기관 및 낙찰 기업 현황
    • 제4장 사례분석 및 개선방향
    • 제1절 사례분석 방법
    • 제2절 사례분석
    • 제5장 결론
    • 제1절 시사점
    • 제2절 정책 제언
    • 참고문헌