Al Implementation based on
compiling neural networks
from SCADE language

December 2, 2021
Max Najork, Principal Engineer

Supported by:
Bernard Dion, Ansys Fellow
Jean-Louis Colaco, Distinguished Engineer

Agenda

Proposed Al workflow

Considerations on NN representation

Overview of the SCADE language and its code generation capabilities
SCADE-based neural network implementation flow

Neural network certification aspects

o vk wNRE

Summary & Conclusion

Proposed Al workflow

Ansys

Customers Face New Challenges in Guidance, Navigation, and
Control (GNC)

4 ©2021 ANSYS, Inc.

Guidance, Navigation, and Control (GNC)

Waypoint 4

Waypoint 2 -

Waypoint 1 Waypoint 3

\nsys

©2021 ANSYS, Inc.

Deep Reinforcement Learning

Agent (Neural Network)

Observations Rewards Actions

Critic

Environment

Deep Reinforcement Learning for GNC

e Observations:
- Own Position and Rotation
- Direction and distance to next waypoint

* Actions:

. Waypoint 4
- Desired Thrust S

- Desired Roll, Pitch, Yaw Waypoint 2

* Rewards: . @
- Positive reward whenever waypoint is Waypoint Waypoint 3

reached
- Highly negative when an obstacle is hit

- Slightly positive when the distance to the
waypoint is reduced

\nsys

8 ©2021 ANSYS, Inc.

Training the Neural Network
(Deep Reinforcement Learning)

:\\‘ ~__Z’__ — ::,7/_,»
- : =

NI

Al/DRL Framework 8

K
W TR T
LS N
/7 - 7,

00

TRV S 20
/ /v"éé‘% /
o O

s

di;_ﬁ_,_j‘. .

Simulation State

Rewards

NN in training actions Ground Truth

Rewards

Simulation results System actions

Y \NnSyYS

Training the GNC Neural Network (1st Round)

Video shows only snap shots from the training phase

©2021 ANSYS, Inc.

Learning Issue: Roll and Yaw Command not learned properly

Roll command was
not properly learned

Pitch command was learned
based on longitudinal distance
and current pitch angle

Acceleration command was
learned based on the
difference in altitude to the
target

Actions

Total effects

YawCmd

RollCmd

PitchCmd |

AccelCmd

(=
DistanceToTargetr i ‘
\ =

0900009.:
19.5 % (| 13.4 %

- 1

| 45.5 %

B
B

B
k

25.3 %

ﬁ

ATargetVertical
ATargetLateral -

ATargetLongitudinal |

Bk
mm@

‘3
0]
>

Observations

— \nsys

©2021 ANSYS, Inc.

Yaw command was not
learned

Measured yaw angle is not
used by neural network

Training the GNC Neural Network (2nd Round)

©2021 ANSYS, Inc.

Learning Issue: fixed (Roll and Yaw Command learned properly)

. Total effects
Actions Yaw command improved

I I I I I I
Roll command was was YawCmd |13.1 %' H
learned based on
learned based on j—:
longitudinal distance and
g . PitchCmd F 0.72%M 4.6 %! 77.9 % 0.7 %,
current pitch angle

AccelCmd

Yaw|

Acceleration command
was learned based on
the difference in altitude

to the target Observations

— \nsys

©2021 ANSYS, Inc.

Higher Explainability of
commands

DistanceToTa rget
ATargetVertical |-
ATargetLateral -

ATargetLongitudinal |-

Importing the NN into SCADE for Integration and Validation

Import trained neural network
into SCADE model

Al/DRL Framework

Ground Truth

Simulation
orchestration

. . System actions
Simulation results

Validation of the Vehicle Function

. \ \

Aircraft sensors
deliver software
inputs

Aircraft actuators
receive software
outputs

—_—

Measurements of pitch,
roll, yaw, etc.

NeuralNetworks::
StickAgent qrm I peskervas

L ve | Commands for aircraft
vressmnces | YIOVEMENt and acceleration

—

FlightControl |... EngineControl...

\nsys

©2021 ANSYS, Inc.

Reliability Analysis: Zero failures, large separating distance

OUTPUT : min_altitude vs. INPUT : rx

L

® L]
. .
. o
L] L]
- L]
[® L]
= L d one L]
L 4 . s ° .
*
.
.
L .
.
L4
L]
L]
n
Sk
=} .
° L]
X
=
So
g
g
L]
n
ab
g
hai
. L
49.6 49.7 49.8
OUTPUT : min_altitude

Safety Limit

Minimum altitude for each scenario
20m No scenario was lower than 49 meters!

Method : Adaptive Response Surface Method (ARSM)

Complete approximations @ 3/ 3
Selected data : 3. Approximation

Probability of Failure : 0
Standard deviation error : inf
Reliability Index : 10

Not a single
- scenario was
Approximation errors : R2 [R2pred
lim_st_min_altitude: 1 / 0.809582 u nsafe !

Number of designs
Total : 1000
Safe domain @ 1000
Unsafe domain : 0
Failure strings : 0
Failed : 0

Directional Sampling on Response Surface
Complete directions @ 5000 / 5000

Number of designs
Total : 25001
Safe domain : 25001
Unsafe demain : 0
Failure strings : 0
Failed : 0

Y \NnSyYS

Neural Network Import to SCADE and Safe Software Generation

e N
Neural Network in SCADE

Trained model

function #pzx ! parat #end model (observations @ float32"8) returns(fc_out : float32"8)

fc_ 2 : float32"256;
fe_1 float327256;

fo_out = (Layers::Dense <<256.8>>)(fc_2. fc_out_kerne fo_out_bias):

) fc_2 = (Layers::TanH <<2565>)((Layers Dense < 56> 5)(fc_1, fc_2_kernel, fc_2_bias)):
y fc 1 = (Layers: :TanH <<256>>)((Layers: :Dense <<8 >3) (Dbservatlcms, fo_1_kernel. fc_1_bias)):
tel
const

imported fc_out_kernel leat?
imported fc_out_bias :
imported fc_2_ kernel :
imported fc_2_bias :
imported fc_1_ kernel :
imported fc_1_bias : float32"256:;

TensorFlow

PYTHRCH

) .> FroniLef tRotorCmad
urrentPach

> FrontRigntRatorCma

Desreccceteration [N]
———— rewrgmraocma

) Reart el fRotorCma

- J

— \nsys

©2021 ANSYS, Inc.

Considerations on NN
representation

Ansys

Transition from Neural Network Frameworks to Design Models

TensorFlow compute graph as Protobuf containing full learning problem:

function 1 pax 1 _mlp(1 g) (1 4)

var

shared_fc0 float32764;

shared fcl float32"64;

let
shared_fc0 = (Laye TanH <<64>>)((L De:)(7fD[|7WEtlght. red_fcl_bias)):
shared_fcl (Lavers TanH <r4>>)((Lavers 'D (s h d f D shared_fcl_ ght h ed_fcl_bias)):
pi = (Lay :Softmax) ((Laye: Dense 4 -'1)(h red fcl, pi_weight, pliblas))

el

Consistency of Models between Phases

Embodiment through software

Observation normalization Neural Network Action de-normalization Control laws
(traditional SW) (ML component) (traditional SW) (tradition software)
tch —_— o >_
>7 >F':\-tR»;r1R:\l:\'C d
.
_ >7 Norm h h ickAgenth Denormé, B | E—
vty >Reav_e-'m:n:«: 4
;“awémw>— RearRightRotorCmd
:% / Reset H>—

Using Design Models Across the Phases

SCADE Language and Code
Generation Properties

Ansys

Scade

 SCADE: Safety Critical Application Development Environment.

 Domain specific language:

dedicated to real-time embedded software,

based on synchronous languages principles => parallel composition is deterministic,
defined and documented independently of toolset implementation,

focuses on safety, has strong statically guaranteed properties:
typed, safe arrays operations,
bounded in time and memory (no dynamic memory allocation),
defined output values (cannot depend on uninitialized memory),
parallelism schedulable as a static sequence.

 SCADE code generator (KCG) is qualified for DO-330 TQL-1

P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. Lustre: a declarative language for programming synchronous systems.
In 14th ACM Symposium on Principles of Programming Languages. 1987.

J-L. Colaco, B. Pagano, and M. Pouzet. Scade 6: A Formal Language for Embedded Critical Software Development.
In Eleventh International Symposium on Theoretical Aspect of Software Engineering (TASE). 2017.

Y \NnSyYS

Available notations for SCADE Models

Calculated Pitch|

altitude |_| +

mathext::AtanR UnitGonv ert

DDDDDDD

node ComputePitchRoll
(speed : float32; imulated Roll
MCP_UnlockRoll : bool; MCP_UnlockRoll
altitude : float32)
returns (pitch, roll : float32) W?JW“M”>———{12}——— B

let pwlinear:-ClockCounter REAL 50.0 mathext:SinR
L [rex]
if MCP_UnlockRoll
then mathext::SinR(
(pwlinear: :ClockCounter(
digital::FallingEdge (MCP UnlockRoll)) : float32) / 50.0) * 10.0
else 0.0;
pitch =
UnitConvert(mathext: :AtanR(
(altitude - (0.0 -> pre altitude)) /
pwlinear: :LimiterUnSymmetrical(speed, 0.01, 10000.0)),
RDtoDEG) /
(libPlane: :TimingConstants::Time cycle * 20.0);

0.0 |_D_’_,D_> roll

tel

Both textual and graphical representation define the same operator

Y \NnSyYS

State machines and block diagrams in a single language

s <chrono» ----, T e «display > ----. B «<clk> ---

reset and : rﬂ display_clock \

click
clk |> > display

r [stopped 1

¢Ik_ripple_min D— - mapfold<s2>>

lf) clock_mode
last 'clk_min_h >_
—
last 'chrono D chrono modCount clk_min_h
: B/\ 10,0, 0 : [60. 24] ——] |>
fﬁ*\ mode and mode and “ - o’
click click
' ' et and click and /
' display_chrono ™ 'clock_mode
startstopend ¥, o <chrono_display _mode> ---
click and not start_stop and display ! - . - ™
‘clock_mode click and not :
'tlock_mode L <sets oo,
H H |
: . unning ™y : |
: : ‘clock_mode :
: mapfold<<3>> : : i
true | a : set and click an H
; < H : ‘clock_mode
last 'chrono »— i t and click \
modCount _| % chrono TESEland CliEk 7 || T e e
[100, 60, 60] b———— N set_m
3 b vy start_stop and click _l
; ; [last 'clk_min_h[0] + 1. last 'clk_min_h[1]] il ¢lk_min_h
If) chrono_running start_stop and click |—)_|)
H ' lap_mode B— lap
: . A :
[last 'clk_min_h[0], last 'clk_min_h{1] + 1] —
"" clock_mode E |—> clkdsp last 'clk_min_h
AN S
mapfolde<2>>| T
e | a D clk_ripple_min
modCount] 7 set_h E_ blink _> blink_h
[100. 60] F—— i’3 clk_min_h =1 r 4’D clk 180
set_m é I— plink _> blink_m
o
ool
Agd

SCADE Suite KCG: a DO-330 TQL-1 qualified code generator

* Translates a SCADE model to C or Ada code.

* Qualification process
* Aims at ensuring that the generated code implements the function defined by the model.
* The generated code is verified wrt the semantics defined in the language specification.

* Code generation options only apply to the shape of the generated code and do not affect the
function specified by the model.

* Qualification credits allow to use this code without having to verify that it
implements the function defined by the model.

Y \NnSyYS

Model Coverage for Scade design

=

s L] e

]
|

]

|

= L.D e

 Based on a measure defined at model level: s (in blue) is covered by a test
showing its ability to contribute to one of the outputs (in red).

* Generalizes the idea of masking MC/DC.

* A 100% coverage analysis of the model holds on the code generated by KCG with
the same test suite (DO-330 FAQ#11).

 TQL-4 tool that gives credit on both activities: code and model coverage analysis.

 Good for conventional functions, likely to be required for NN code but does not
fully tackle the verification of the absence of unintended function.

Y \NnSyYS

SCADE Neural Network
Implementation Flow

Ansys

Arrays in Scade and NN inference implementation

* Arrays main features:
 Single dimension, nesting is allowed (arrays of arrays).

e Safe:
. size is part of the type and of the type checking;
. accesses are always done within bounds (dynamic projections have a default).

arrays are always completely defined.
manipulated through iterators (map, fold, ...)

* Polymorphism of user defined operators in types and array sizes.
* Expressive enough to specify standard NN layers.

Scade allows to:
- write generic libraries of NN layers,
- compose them to define NN-based function and
- take certification credits of the tools (see SCADE DO-178C handbook).

Y \NnSyYS

Scade library of NN layers

Defined with the textual notation, more convenient here:

-- InnerProduct layers

function InnerProduct 3D << D3, D2, D1, D o >> (x : 'T"D1”D2”~D3; weight : 'T~D1"D2"D3"D o; bias :

returns (y : 'T"D o) where 'T numeric
y = (map (fold (fold (dot bias <<D1>>) <<D2>>) <<D3>>) <<D o0>>)(bias, x"D o, weight);

function InnerProduct 1D << N, M >> (x : 'T”N; weight : 'T"N”M; bias : 'T™M)
returns (y : 'T™M) where 'T numeric
y = (map (_dot bias <<N>>) <<M>>)(bias, x"M, weight);

-- ReLU activation layer

function relu(x : 'T) returns (y : 'T) where 'T numeric
y = if x >= 0 then x else 0;

function ReLu << N >> (x : 'T”N) returns (y : 'T"N) where 'T numeric
y = (map relu <<N>>)(x);
-- Softmax layer, the normalized exponential function

function Softmax << N >> (X : 'T”N) returns (y : 'T”N) where 'T float
var m, sum : 'T;

n, E TN
let

m = (fold max <<N>>)(x[0], X);

n= (map $-$ <<N=>>)(x, m™N);

E = (map exp <<N>>)(n);

sum = (fold $+$ <<N>>) (0., E);

y = (map $*$ <<N>>)(E, (1. / sum)”N);

tel

'TAD o)

-~
-
)
<
n

Example: LeNet-5

function lenet(i :

var

let

L7
L6
L5
L4
L3
L2
L1
LO
tel

LO
L1
L2
L3
L4
L5
L7

, Le @ fl
. fl

(Layers:
(Layers:
(Layers:
(Layers:
(Layers:
(Layers:
(Layers:
(

(

Layers::

prepare

0at327500;
0at32”10;

:Softmax

<< 10 >>

:InnerProduct 1D <<500, 10>>

:RelLu

<< 500 >>

:InnerProduct 3D <<50,4,4, 500>>

:Pool_max
:Convol
:Pool _max
Convol
<<28>>) (1) ;

-- model parameters
const imported

-- in total: 431080 parameters

imported
imported
imported
imported
imported
imported
imported

convl weight :

convl bias

conv2 weight :

conv2 bias
ipl weight
ipl bias
ip2 weight
ip2 bias

<<20,12,12, 5,50>>

) (
) (
) (
) (
<<50,8,8>>)(
) (
<<20,24,24>>) (

) (

<<]1,28,28, 5,20>>

float3275"5"1720;
float32"20;
float3275"5"20"50;
float32750;
float3274"4750"500;
float327500;
float327500710;
float32"10;

uint8~(28*28)) returns (o : float32710)
: float32728728"1;

: float32724724720;

: float32712712720;

: float327878"50;

: float327474750;

7);

)

L
L6, ip2 weight, ip2 bias); Convolution
L

L4, ipl weight, ipl bias); Pooling

L
L2,
L
L

5
3);
2
1);
0

-- 500
-- 20
-- 25000
-- 50
-- 400000
-- 500
-- 5000
-- 10

conv2 weight, conv2 bias);

, convl weight, convl bias);

Convolution

Pooling

InnerProduct
RelLU

InnerProduct

Softmax

LeNet : a CNN for «handwritten and machine-printed character recognition».
by Y. LeCun, L. Bottou, Y. Bengio (1998)

Y \NnSyYS

©2021 ANSYS, Inc.

1

Example: LeNet-5 (equivalent diagram)

{256,

prepane<<28=»>

convl weight

convl_bias

—
—

Layers::Convole<1, 28, 28, 5, 20=>

ci1

Layers:Pool_max==20, 24 24=>

52

I

conv2_welght —
conv2_bias +—

Layers: Convol=<20, 12 12 5 S0==

54

Layers::Pool_max=<50, 8 S==

I

ipl_weight +—Layers:InnerProduct 30<<50, 4 4 500:==

ipl bias +—

CH

8

Layers::R elu<=500>=

ip2_weight
ip2_bias

I

—]
—]

FCY

Layers::InneP oduct_1D<=<500, 10==

]

Layers:Softmax=<10==

°<

Convolution

Pooling

Convolution

Pooling

InnerProduct
RelLU

InnerProduct

Softmax

ns

S

Neural Network
Certification Aspects

Ansys

From RTCA DO-331:

Table MB.1-1 Model Usage Examples

Approach: Positioning of the ML model within the DO-178C/ DO-
331 life-cycle

Process that MB Example 1 MB Example 2 MB Example 3 | MB Example 4]] MB Example 5
generates the (See Note 1) (See Note 1)
life-cycle data

System Requirements
Requirement Requirements Requirements Requirements Requirements from which the
and System allocated to from which the from which the from which the Model is
Design software Model is Model is Model is developed
Processes developed developed developed
Design Model
Software Requirements
Requirement from which the Specification Specification Design Model
and Software Model s Model Model
Design developed (See Note 2)
Processes Design Model Design Model Textual
description
(See Note 3)
Software Source Code Source Code Source Code Source Code Source Code
Coding
Process

Y \NnSyYS

DO-178C/D0-331 generic model based workflow (for ML)

Validate
Model Prototyping & REQUIREMENTS
Simulation
/’
/
Trace Design Model to Software Modeling Conformance to
Reqt}i ements
K\\ Modeling Standards Functional Verification
S~ o (Model Simulation)
Il - MODELS Model Coverage
Functional Verification
ML models are hardly traceable to Software-requirement-based
. Testing
| oae .ge . .
requirements: Generated Code 1 Traditional verification not possible
without traceability and
equivalence classes!
SOURCE CODE
Compile & Build l
OBIJECT CODE

Y \NnSyYS

Model Simulation during Validation Activities

Step

W WM = =

Mame

AutoPilot/DesiredVerticaldcceleration
AutoPilot/DesiredRoll

AutoPilot/D esiredPitch

AutoPilot/D esitedVerticalicceleration
AutoPilot/DesiredRol
AutoPilot/DesiredPitch
AutoPilot/DesiredVerticalicceleration
AutoPilot/DesiredRoll
AutoPilot/DesiredPitch

Actual Value
oo
0.002504933382
0.005004993693
5800
-1.697430036
-1.19490392

-1.637485089
-1.194984913

Expected Value
0o

2505e-3
5.005e:3

580.0

1657

-1.195

800

-1.697

1185

Actions

YawCmd

RollCmd

PitchCmd

Accelcmd

ATargetLateral

Total effects o

ATargetLongitudinal

Observations

Code is guaranteed (tool
qualification) to comply with
functionality specified in model

Y \NnSyYS

Software Behavior and Numerical Computations

 Model Simulation is largely accepted to demonstrate the compliance of a model with
its requirements

 However, RTCA DO-331 requires certain aspects to be tested on target (e.g.,
numerical accuracy)

—-> NN may be strongly sensitive towards exactly these differences

—=> NN numerical robustness is a key requirement to proof complementing model
simulation

Summary and Conclusion

Ansys

Summary and Conclusion

* Al-based vehicle functions allow us to increase the level of autonomy
Al certification remains challenging but is progressing quickly

* We propose the following flow for verification and safe implementation:

Trained Safe Source
NN Model Code

\nsys

Max.Najork@ansys.com
Jaehoon.lim@ansys.com

mailto:Max.Najork@ansys.com
mailto:Jaehoon.lim@ansys.com

