
AI Implementation based on
compiling neural networks
from SCADE language

December 2, 2021

Max Najork, Principal Engineer

Supported by:

Bernard Dion, Ansys Fellow

Jean-Louis Colaço, Distinguished Engineer

2

Agenda

1. Proposed AI workflow

2. Considerations on NN representation

3. Overview of the SCADE language and its code generation capabilities

4. SCADE-based neural network implementation flow

5. Neural network certification aspects

6. Summary & Conclusion

Proposed AI workflow

3

4

Customers Face New Challenges in Guidance, Navigation, and
Control (GNC)

Guidance, Navigation, and Control (GNC)

Waypoint 1

Waypoint 2

Waypoint 3

Waypoint 4

6

Flight example 1: Robustness against disturbances

Operating VTOL vehicle automatically maintains position at waypoint despite perturbations by stick.

7

Deep Reinforcement Learning

8

Deep Reinforcement Learning for GNC

• Observations:
‐ Own Position and Rotation
‐ Direction and distance to next waypoint

• Actions:
‐ Desired Thrust
‐ Desired Roll, Pitch, Yaw

• Rewards:
‐ Positive reward whenever waypoint is

reached
‐ Highly negative when an obstacle is hit
‐ Slightly positive when the distance to the

waypoint is reduced
→We can come up with any sort of reward

9

Training the Neural Network
(Deep Reinforcement Learning)

Vehicle
Simulator

SCADE
Embedded

Code

Ground Truth

System actions

Rewards

NN in training actions

SCADE
Rewards

Rewards

Simulation State

Data Analytics Simulation results

AI/DRL Framework

10

Training the GNC Neural Network (1st Round)

Video shows only snap shots from the training phase

Learning Issue: Roll and Yaw Command not learned properly

11

Yaw command was not
learned

Observations

Actions

Acceleration command was
learned based on the
difference in altitude to the
target

Pitch command was learned
based on longitudinal distance
and current pitch angle

Roll command was
not properly learned

Measured yaw angle is not
used by neural network

12

Training the GNC Neural Network (2nd Round)

Learning Issue: fixed (Roll and Yaw Command learned properly)

13

Yaw command improved

Observations

Actions

Acceleration command
was learned based on
the difference in altitude
to the target

Pitch command was
learned based on
longitudinal distance and
current pitch angle

Roll command was was
learned based on

Higher Explainability of
commands

14

Importing the NN into SCADE for Integration and Validation

Vehicle
Simulator

SCADE Embedded
Code

Ground Truth

System actions

AI/DRL Framework

Import trained neural network
into SCADE model

Data Analytics

Simulation results

Simulation
orchestration

15

Validation of the Vehicle Function

Aircraft sensors
deliver software
inputs

Measurements of pitch,
roll, yaw, etc.

Aircraft actuators
receive software
outputs

Commands for aircraft
movement and acceleration

16

Reliability Analysis: Zero failures, large separating distance

Minimum altitude for each scenario
No scenario was lower than 49 meters!

Safety Limit
20m

Not a single
scenario was
unsafe!

17

Neural Network Import to SCADE and Safe Software Generation

Conventional Functions in SCADE

Neural Network in SCADE

Generate Code
& Compile

Importer

Trained model

Considerations on NN
representation

18

19

Transition from Neural Network Frameworks to Design Models

TensorFlow compute graph as Protobuf containing full learning problem:

Formal representation of the same neural network in SCADE Language after import

20

Consistency of Models between Phases

Consistency of models between the different phases is key to the safe operation of
ML-based vehicle functions

Train Validate Implement

21

Embodiment through software

Consistency between training, validation, and implementation is ensured through integration
with actual embedded models and qualified code generation

Observation normalization
(traditional SW)

Control laws
(tradition software)

Neural Network
(ML component)

Action de-normalization
(traditional SW)

Using Design Models Across the Phases

Others like Data
Prep

Validate Complete
Vehicle Function

Train ML Model

Validate ML Model
Implement Integrated

Vehicle Function

Design Model for Combined Vehicle Function (e.g., SCADE)

ML Training Model
Implement

Traditional Software

Generated
Embedded Code

Train Validate ImplementTraining Preparation

Import

SCADE Language and Code
Generation Properties

24

Scade

• SCADE: Safety Critical Application Development Environment.

• Domain specific language:
• dedicated to real-time embedded software,
• based on synchronous languages principles => parallel composition is deterministic,
• defined and documented independently of toolset implementation,
• focuses on safety, has strong statically guaranteed properties:

• typed, safe arrays operations,
• bounded in time and memory (no dynamic memory allocation),
• defined output values (cannot depend on uninitialized memory),
• parallelism schedulable as a static sequence.

• SCADE code generator (KCG) is qualified for DO-330 TQL-1

P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. Lustre: a declarative language for programming synchronous systems.
In 14th ACM Symposium on Principles of Programming Languages. 1987.
J-L. Colaco, B. Pagano, and M. Pouzet. Scade 6: A Formal Language for Embedded Critical Software Development.
In Eleventh International Symposium on Theoretical Aspect of Software Engineering (TASE). 2017.

Available notations for SCADE Models

25

Both textual and graphical representation define the same operator

26

State machines and block diagrams in a single language

27

SCADE Suite KCG: a DO-330 TQL-1 qualified code generator

• Translates a SCADE model to C or Ada code.

• Qualification process

• Aims at ensuring that the generated code implements the function defined by the model.

• The generated code is verified wrt the semantics defined in the language specification.

• Code generation options only apply to the shape of the generated code and do not affect the

function specified by the model.

• Qualification credits allow to use this code without having to verify that it

implements the function defined by the model.

28

Model Coverage for Scade design

• Based on a measure defined at model level: s (in blue) is covered by a test
showing its ability to contribute to one of the outputs (in red).

• Generalizes the idea of masking MC/DC.
• A 100% coverage analysis of the model holds on the code generated by KCG with

the same test suite (DO-330 FAQ#11).
• TQL-4 tool that gives credit on both activities: code and model coverage analysis.
• Good for conventional functions, likely to be required for NN code but does not

fully tackle the verification of the absence of unintended function.

SCADE Neural Network
Implementation Flow

30

Arrays in Scade and NN inference implementation

• Arrays main features:
• Single dimension, nesting is allowed (arrays of arrays).
• Safe:

• size is part of the type and of the type checking;

• accesses are always done within bounds (dynamic projections have a default).

• arrays are always completely defined.

• manipulated through iterators (map, fold, …)

• Polymorphism of user defined operators in types and array sizes.

• Expressive enough to specify standard NN layers.

Scade allows to:
‐ write generic libraries of NN layers,
‐ compose them to define NN-based function and
‐ take certification credits of the tools (see SCADE DO-178C handbook).

31

Scade library of NN layers

Defined with the textual notation, more convenient here:

32

Example: LeNet-5

LeNet : a CNN for «handwritten and machine-printed character recognition».
by Y. LeCun, L. Bottou, Y. Bengio (1998)

33

Example: LeNet-5 (equivalent diagram)

Neural Network
Certification Aspects

Approach: Positioning of the ML model within the DO-178C/ DO-
331 life-cycle

From RTCA DO-331:

DO-178C/DO-331 generic model-based workflow (for ML)

REQUIREMENTS

SOURCE CODE

OBJECT CODE

MODELS

Validate

Generated Code

Compile & Build

Verify
Trace Design Model to Software

Requirements
Conformance to

Modeling Standards Functional Verification
(Model Simulation)
Model Coverage Verify

Functional Verification
Software-requirement-based
Testing

Model Prototyping &
Simulation

Modeling

ML models are hardly traceable to
requirements! Traditional verification not possible

without traceability and
equivalence classes!

37

Model Simulation during Validation Activities

Formal Model for Combined Vehicle Function (e.g., SCADE)

Generated Target
Code

Generated Traditional
Host Testing Code

Traditional Host-
based Testing

Code is guaranteed (tool
qualification) to comply with
functionality specified in model

Generated Neural
Network Code

Validate ML Model

Generated Vehicle
Function Code

Validate Complete
Vehicle Function

38

Software Behavior and Numerical Computations

• Model Simulation is largely accepted to demonstrate the compliance of a model with
its requirements

• However, RTCA DO-331 requires certain aspects to be tested on target (e.g.,
numerical accuracy)

→NN may be strongly sensitive towards exactly these differences

→NN numerical robustness is a key requirement to proof complementing model
simulation

Summary and Conclusion

Summary and Conclusion

• AI-based vehicle functions allow us to increase the level of autonomy

• AI certification remains challenging but is progressing quickly

• We propose the following flow for verification and safe implementation:

Obtain Formal
Software Model

Understand
Learning Result

Quantify Failure
Probability

Utilize Qualified
Code Generation

Trained
NN Model

Safe Source
Code

Max.Najork@ansys.com
Jaehoon.lim@ansys.com

mailto:Max.Najork@ansys.com
mailto:Jaehoon.lim@ansys.com

