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Customers Face New Challenges in Guidance, Navigation, and 
Control (GNC)



Guidance, Navigation, and Control (GNC)

Waypoint 1

Waypoint 2

Waypoint 3

Waypoint 4
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Flight example 1: Robustness against disturbances

Operating VTOL vehicle automatically maintains position at waypoint despite perturbations by stick.
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Deep Reinforcement Learning



8

Deep Reinforcement Learning for GNC 

• Observations:
‐ Own Position and Rotation
‐ Direction and distance to next waypoint

• Actions:
‐ Desired Thrust
‐ Desired Roll, Pitch, Yaw

• Rewards:
‐ Positive reward whenever waypoint is 

reached
‐ Highly negative when an obstacle is hit
‐ Slightly positive when the distance to the 

waypoint is reduced
→We can come up with any sort of reward
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Training the Neural Network
(Deep Reinforcement Learning)

Vehicle 
Simulator

SCADE 
Embedded 

Code

Ground Truth

System actions

Rewards

NN in training actions

SCADE 
Rewards

Rewards

Simulation State

Data Analytics Simulation results

AI/DRL Framework
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Training the GNC Neural Network (1st Round)

Video shows only snap shots from the training  phase



Learning Issue: Roll and Yaw Command not learned properly
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Yaw command was not 
learned

Observations

Actions

Acceleration command was 
learned based on the 
difference in altitude to the 
target

Pitch command was learned
based on longitudinal distance 
and current pitch angle

Roll command was 
not properly learned

Measured yaw angle is not 
used by neural network
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Training the GNC Neural Network (2nd Round)



Learning Issue: fixed (Roll and Yaw Command learned properly)
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Yaw command improved

Observations

Actions

Acceleration command
was learned based on 
the difference in altitude 
to the target

Pitch command was
learned based on 
longitudinal distance and 
current pitch angle

Roll command was was
learned based on 

Higher Explainability of 
commands
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Importing the NN into SCADE for Integration and Validation

Vehicle 
Simulator

SCADE Embedded 
Code 

Ground Truth

System actions

AI/DRL Framework

Import trained neural network 
into SCADE model

Data Analytics

Simulation results

Simulation 
orchestration
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Validation of the Vehicle Function

Aircraft sensors 
deliver software 
inputs

Measurements of pitch, 
roll, yaw, etc.

Aircraft actuators 
receive software 
outputs

Commands for aircraft 
movement and acceleration
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Reliability Analysis: Zero failures, large separating distance

Minimum altitude for each scenario
No scenario was lower than 49 meters!

Safety Limit
20m

Not a single 
scenario was 
unsafe!
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Neural Network Import to SCADE and Safe Software Generation

Conventional Functions in SCADE

Neural Network in SCADE

Generate Code 
& Compile

Importer

Trained model



Considerations on NN 
representation
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Transition from Neural Network Frameworks to Design Models  

TensorFlow compute graph as Protobuf containing full learning problem:

Formal representation of the same neural network in SCADE Language after import
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Consistency of Models between Phases

Consistency of models between the different phases is key to the safe operation of 
ML-based vehicle functions

Train Validate Implement
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Embodiment through software 

Consistency between training, validation, and implementation is ensured through integration 
with actual embedded models and qualified code generation

Observation normalization
(traditional SW)

Control laws
(tradition software)

Neural Network
(ML component)

Action de-normalization
(traditional SW)



Using Design Models Across the Phases

Others like Data 
Prep

Validate Complete 
Vehicle Function 

Train ML Model

Validate ML Model 
Implement Integrated 

Vehicle Function

Design Model for Combined Vehicle Function (e.g., SCADE)

ML Training Model
Implement 

Traditional Software 

Generated 
Embedded Code

Train Validate ImplementTraining Preparation

Import



SCADE Language and Code 
Generation Properties
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Scade

• SCADE: Safety Critical Application Development Environment.

• Domain specific language:
• dedicated to real-time embedded software,
• based on synchronous languages principles => parallel composition is deterministic,
• defined and documented independently of toolset implementation,
• focuses on safety, has strong statically guaranteed properties: 

• typed, safe arrays operations, 
• bounded in time and memory (no dynamic memory allocation), 
• defined output values (cannot depend on uninitialized memory),
• parallelism schedulable as a static sequence.

• SCADE code generator (KCG) is qualified for DO-330 TQL-1

P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. Lustre: a declarative language for programming synchronous systems.
In 14th ACM Symposium on Principles of Programming Languages. 1987.
J-L. Colaco, B. Pagano, and M. Pouzet. Scade 6: A Formal Language for Embedded Critical Software Development.
In Eleventh International Symposium on Theoretical Aspect of Software Engineering (TASE). 2017.



Available notations for SCADE Models
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Both textual and graphical representation define the same operator
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State machines and block diagrams in a single language
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SCADE Suite KCG: a DO-330 TQL-1 qualified code generator

• Translates a SCADE model to C or Ada code.

• Qualification process

• Aims at ensuring that the generated code implements the function defined by the model.

• The generated code is verified wrt the semantics defined in the language specification.

• Code generation options only apply to the shape of the generated code and do not affect the 

function specified by the model.

• Qualification credits allow to use this code without having to verify that it 

implements the function defined by the model.
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Model Coverage for Scade design

• Based on a measure defined at model level: s (in blue) is covered by a test 
showing its ability to contribute to one of the outputs (in red).

• Generalizes the idea of masking MC/DC.
• A 100% coverage analysis of the model holds on the code generated by KCG with 

the same test suite (DO-330 FAQ#11).
• TQL-4 tool that gives credit on both activities: code and model coverage analysis.
• Good for conventional functions, likely to be required for NN code but does not 

fully tackle the verification of the absence of unintended function.



SCADE Neural Network 
Implementation Flow
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Arrays in Scade and NN inference implementation

• Arrays main features:
• Single dimension, nesting is allowed (arrays of arrays).
• Safe: 

• size is part of the type and of the type checking;

• accesses are always done within bounds (dynamic projections have a default).

• arrays are always completely defined. 

• manipulated through iterators (map, fold, …)

• Polymorphism of user defined operators in types and array sizes.

• Expressive enough to specify standard NN layers.

Scade allows to:
‐ write generic libraries of NN layers,
‐ compose them to define NN-based function and 
‐ take certification credits of the tools (see SCADE DO-178C handbook).
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Scade library of NN layers

Defined with the textual notation, more convenient here:
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Example: LeNet-5

LeNet : a CNN for «handwritten and machine-printed character recognition».
by Y. LeCun, L. Bottou, Y. Bengio (1998)



33

Example: LeNet-5 (equivalent diagram)



Neural Network 
Certification Aspects



Approach: Positioning of the ML model within the DO-178C/ DO-
331 life-cycle

From RTCA DO-331:



DO-178C/DO-331 generic model-based workflow (for ML)

REQUIREMENTS

SOURCE CODE

OBJECT CODE

MODELS

Validate

Generated Code

Compile & Build

Verify
Trace Design Model to Software 

Requirements
Conformance to 

Modeling Standards Functional Verification 
(Model Simulation)
Model Coverage Verify

Functional Verification
Software-requirement-based 
Testing

Model Prototyping & 
Simulation

Modeling

ML models are hardly traceable to 
requirements! Traditional verification not possible 

without traceability and 
equivalence classes!
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Model Simulation during Validation Activities 

Formal Model for Combined Vehicle Function (e.g., SCADE)

Generated Target 
Code

Generated Traditional 
Host Testing Code

Traditional Host-
based Testing

Code is guaranteed (tool 
qualification) to comply with 
functionality specified in model

Generated Neural 
Network Code

Validate ML Model 

Generated Vehicle 
Function Code

Validate Complete 
Vehicle Function 
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Software Behavior and Numerical Computations

• Model Simulation is largely accepted to demonstrate the compliance of a model with 
its requirements

• However, RTCA DO-331 requires certain aspects to be tested on target (e.g., 
numerical accuracy)

→NN may be strongly sensitive towards exactly these differences 

→NN numerical robustness is a key requirement to proof complementing model 
simulation 



Summary and Conclusion



Summary and Conclusion 

• AI-based vehicle functions allow us to increase the level of autonomy 

• AI certification remains challenging but is progressing quickly 

• We propose the following flow for verification and safe implementation: 

Obtain Formal 
Software Model

Understand 
Learning Result

Quantify Failure 
Probability

Utilize Qualified 
Code Generation 

Trained 
NN Model

Safe Source 
Code



Max.Najork@ansys.com
Jaehoon.lim@ansys.com

mailto:Max.Najork@ansys.com
mailto:Jaehoon.lim@ansys.com

