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Scope of the Talk SIA

* Introduction to Autonomous Systems

* Specifying Objectives (Safely)

* Online vs Off-Line Machine Learning

* Machine Learning Challenges

* Black Box Testing

 White Box Testing

* The Necessity of Virtual Test Environments
* Conclusions



Introduction to
Autonomous Systems
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Definition used for Autonomous System

* Autonomy

— the capacity to make an informed, un-coerced decision.
Autonomous organizations or institutions are
independent or self-governing

— the ability to act independently of direct human control
and in unrehearsed conditions

* Autonomous System

— system that changes its behaviour based on its
experiences and the current situation to achieve given
objectives without human control
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Basic Autonomous System Framework
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High-Level Machine Intelligence  STA
- as predicted by published Al researchers

“High-level machine intelligence” (HLMI) is achieved when unaided machines
can accomplish every task better and more cheaply than human workers.
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Specifying Objectives
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The Midas Problem
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m hungry! Make me dinner”




“Keep the kitchen clean”
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Side-Effects, Reward Hacking and Role Models SIA

* Reinforcement learning involves the system being
rewarded for achieving objectives

— must be aware of side-effects

— however problems can arise with ‘reward hacking” when
the system ‘hacks’ the objectives

* Instead, we can get systems to learn from human
demonstrations

— and get feedback from humans
* BUT
— make sure the humans are representative
— recognize that human values change over time
— humans aren’t always the best role models...
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Better than Humans?




Online vs Off-Line
Machine Learning
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Continuous Online Learning
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Off-Line Learning — from Day-to-Day Use(i STA
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Performance Updates - Over-The-Air
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Machine Learning
Challenges
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Deep Learning Systems

/ Artificial Intelligence (Al) \
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Machine Learning (ML)

Deep Learning
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Example of Machine Learning

example A

training set
for image
classification )

Network
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Supervised Machine Learning

Model &
Parameter
Selection
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Checking the Training Set
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\ex’rr'aneous data, outliers, etc.

Need to look for D
biased training data,
overfitting, underfitting,
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Misunderstanding — Data Bias
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Incomplete Training Set
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Checking the Training & Test Sets “STA

(" Are the sets )
- ~ based on real Model &
Is there or synthetic Parameter
enough  data? Selection
training and
\ test data? rx L/J ¢
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Are the two
sets truly
independent?
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Manually-labelled training and
test sets are open to errors...




Checking the Training

@ SIA
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Black Box Testing of
Autonomous Systems
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Test Challenges of Autonomous Systems

* Expected Results (Test Oracle)

— if we struggle to set the objectives, then determining expected
results will be equally difficult

* Probabilistic Systems and Non-Determinism

— the probabilistic nature means that predicting expected results
is difficult

* we need many more tests to be statistically confident
— non-determinism causes real problems for regression testing
 Complexity
— autonomous systems are difficult to understand - and to test
— interacting autonomous systems may cause ‘special’ failures
— many sensors can create many tests...
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Back-to-Back Testing
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A partial solution to
the oracle problem

Autonomous
test inputs =»| System Under
Test

Another
Autonomous
System

: :  And another
(PEPTTTR )- Autonomous

More criticality
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actual outputs

more
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White Box Testing of
Autonomous Systems



Deep Neural Net
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Activation Values @« STA

each connection J

‘ has a ‘weight’
/ each neuron outputs an )
activation value to the next
ﬂ layer based on:
» input activation values;
"a'”e  the bias; and
* the weight )
activation values can be
positive, negative or zero

each neuron
has a 'bias’
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‘Neuron’ Coverage

activation value is above zero ]
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The Necessity of
Virtual
Test Environments
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Autonomous Cars — Test Environments

“The solution is to use Testing dangerous
proper simulation for at scenarios here
least 99.99% of the effort” Public is...dangerous!
- M de Kort Roads

Test Tracks

Virtual Tests / Simulated Environments

we can run tests here

White fast enough o easily Control and
Box reach the equivalent observability are far
\Of 5 billion miles P simpler on simulators




Conclusions
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Autonomous System Costs

[pr'obabilis’ric
testing
requires many
tests

Test Costs
W

Build Costs
W

for safety-critical
systems we traditionally

spend 80% on testing

\and 207 on development

Don't be surprised when

Y
testing costs a lot!
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Conclusions — Safety of Autonomous Systems

* For the ‘simple’ case of off-line systems we need:

— both black and white box testing

— new test approaches and measures (with evidence)

— more tests to assure these probabilistic systems

— the support of sophisticated virtual test environments
* For the learning on-line systems we need:

— to understand the new dangers these systems bring

e Until we reach maturity, we should use a safety net...



Safety Shell Architecture @ STA

A 'short-term’
solution to our lack of
testing expertise
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Thank you for listening




