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Agenda

Backgrounds - Drug development process

Prediction of drug-target interactions using
deep neural networks model
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Pharmaceutical company

Pfizer & IBM Watson

: IBM and Pfizer to Accelerate Immuno-
oncology Research with Watson for
Drug Discovery

Janssen & BenevolnetAl (2016)
: BenevolentAl signs exclusive —
license agreement with Janssen janssen )' BenevolentAl
for clinical-stage drugs

GSK & Exscientia (2017)

o Exscientia : GSK Launches Up-to-$43M Al-Focused
' | Collaboration with Exscientia

G ]
II ComSysBioLAB

Gwangju Institute of (]
Science and Technology L]



Why NOW? Drug discovery?

Why is Deep Learning Hot Now?

Big Data Availability New ML Techniques GPU Acceleration

350 millions

facebook  images uploaded

per day

. 2.5 Petabytes of
Walmart>{ customer data
hourly

300 hours of video
YoulRili: uploaded every
minute
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CPU GPU

Internal
Structure

* Few complex cores
e Specialized in Serial processing

* Many simple cores
* Built for Parallel processing (ex. Image)

~1000 GFLOPS Throughput ~10000 GFLOPS*
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TOP 3 HIGH-END NVIDIA GPUs

|

'Name | GeForce GTX 1080Ti NVIDIA TITAN Xp NVIDIA TITAN V

Architecture Pascal Pascal Volta (Brand New)
CUDA cores 3584 3840 5120
Clock Speed 1582 MHz 1582 MHz 1455 MHz

11GB GDDR5X 12GB GDDR5X 12GB HBM2?
VRAM Size (bus interface : 352 bit) (bus interface : 384 bit) (bus interface : 3072 bit)
Memory Bandwidth 484.4 GB/s 547.6 GB/s 652.8 GB/s
Price $699 USD $1,199 USD $2,999 USD
siapsor Cores? n/a n/a 640 °

ComSysBioLAB

HEM L HBM2 memory is composed of higher bus interface than GDDR5X. o

Gwangju Institute of

sienceandTecnoosy 2 EXClUSIVE Optimized cores for Deep learning operations. o
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Drug discovery?

Why is Deep Learning Hot Now?

Big Data Availability New ML Techniques GPU Acceleration

ours of video
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DATA DRIVEN DRUGS
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Big Data ! (chemical compound, target)

1,000,000,000

1,000,000 o mm— e —

1,000
1
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
=== Tested Compound (2M, 11K drug) &= Bioactivity Outcomes (250M)
Protein Target (10K) e DP| (28K from 4K drug)
w=ie== CP| (1M from 500K compound) e=@==Negative CP| (150M from 1M compound)

Fig. 2. The growth of biological data in PubChem BioAssay including biologically tested compounds, bioactivity outcomes, protein targets,
drug-protein interactions (DPIs), compound-protein interactions (CPIs), negative compound-protein interactions (CPIs). The number in
parcnthesis is the total count of cach data category. DPI and CPI arc counted based on the confirmatory and literature-based assays
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Big Data ! (beyond the compounds)

Trends in Pharmacological Sciences September 2014, Vol. 35, No. 9

. NIH LINCS
15 ConNNECTIVITY MAP
c o )=t
Gene Expression Omnibus
_ R S ROADNAP
2 ‘L':-.-., epigenomics

OMIM ﬁﬂ,‘ 7ol
Oxlise Mendellan Inheritance In Man WAl Usiversiny

MGT

The Cancer Genome Atlas (- mndng ponome

GTE 0 iMprove concer care

Oeratye- |ime Lgrmocn muis

Drug and gene knockdown followed
by genome-wide expression Networks

Transcription factors and histone
modifications profiled by ChiIP-seq

Drug and knockdown effects on cell
viability

Gene-set

KO and mutant genes and their libraries

disease phenotypes m m

Gene expression from patient cohorts m m
with genomics and clinical outcome

data
Protein-protein interactions and Bi-partite
cell-or metabolic-pathways graphs

S S

. P T
Drugs and toxic chemicals that S —0
cause adverse events 0 & 0
A -y o

TRENDS in Pharmacological Sciences

Figure 3. Resources from systems biology and systems pharmacology can be integrated by first identifying the various objects, their relations, and their data types and
Gwangju Ins then converting the data into single-entity weighted networks, fuzzy-set libraries, or weighted multipartite graphs.
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Considering individual genomes

precisionFDAf

Overvie
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Add an As 0

Contribute a
thatcanbeu

Latino
African

European

East Asian

1000 Genomes
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ESP

ExAC

App
atics or other Linux-
g on the cloud

| Launch first app

gnomAD
The Iong-term goal O1 tne platorm IS 1o streamiine tne process ot

evaluating tests leading to medical patients being able to get precise
I care based on their own individual genomic data
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Drug discovery?

Why is Deep Learning Hot Now?

New ML Techniques GPU Acceleration

Big Data Availability

350 millions

hours of video

Yﬂ“ uploaded every
minute
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Ingoo Lee, Jongsoo Keum, Hojung Nam™*, "DeepConv-DTI: Prediction of
drug-target interactions via deep learning with convolution on protein
sequences", Bioinformatics, Under review.

DRUG-TARGET INTERACTION
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in-silico based DTI approaches

docking-based Machine learning based

Drug descriptor Protein descriptor

Enzyme EEEINNNNIZSOSINNN

lon Channel SSNNZZE
Nuclear Receptor [[EEIINNEGNGNEZGN
GPCR ST

0% 50% 100%
mw/3D mwo/ 3D
Can be applied to limited proteins Can be applied to all general proteins
High Run time complexity Low run time complexity

ju Institute of
Science and Technology [}



Similarity-based method

Similarity based DTI

Similar structure

¥ N
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CHj3
0
HsC

Ibuprofen
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Similar structure
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-target interaction (A)
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Problems of Similarity-based method

* Miss prediction * High time complexity

Similarity = 0.31 e 7

G B AO
N 7 |)j\:;/CH, N . -
Sorafenib Nilotinib - /\| /\ @

* Common important substructures,

but low similarity because of their
proportion * Time complexity: O(nyn+n,n )~0(n?)

¥ !

* Does not work well (Low performance) < Hard to train (High time cost)

* Large scale data for performance
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DeepConv-DTI : CNN based model to detect
binding regions

Binding region of target protein have a
pattern to interact with drug

We can use patterns of binding regions
to predict DTI for machine learning
model

Recently, convolutional neural network
have received attraction to extract local
patterns

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2) +
(-1x2)+(0x4)+(1x1) =-3

BancaaEe)

* 3D co-crystal structure of gleevec
and its interaction with target protein b oo

Convolution filter

Destination pixel
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Neuron vs. Perceptron

impulses carried
toward cell body
branches
dendﬁlesw of axon
axon Inputs f -
nucleus \é_gon/_ terminals Output
. : |
impulses carried Activation
away from cell body Function
cell body
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Deep Neural Network

Object
Models

Output:
(face)

Object
parts

Edges

Pixels
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Overview

- Known DTIs + randomly generated negative DTIs E
: - ' DTI database . :
: u - DrugBank Training model .
; ' _KEGG with collected dataset :

E Fingerprints E E :
‘ ofolii] - Jololi]1]:: :
. Fully connected layer .. E
: <;L—_| I :
. Fully connected layer . 3 E
- = - = Z i+ -MATADOR '
. I I ] ] l ] .+ - Predicted negative dataset *
: Deep Neural Netw_orlf Model ol *1  Tuning hyperparameters
: For DTI Prediction O .
:................................- ........................... e
I - PubChem Bioassay Predict new DTIs E
' - KinaseSARfari in independentS dataset -
G . E @
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Performance evaluation

 Comparison with other protein descriptor
(vs CTD, similarity-based)
Precision-recall curves

1.0

1.0
0 8 _ I Convolution
" DBN (2016)

0.6 N )

0.4 1

0.2 - = AUPR of Convolution: 0.832 0.0 ' ' : : :
Sen Spe Pre Acc F1

= AUPR of CTD: 0.694
—— AUPR of Similarity: 0.860

o o
[~} [=-]

Performance
N

Precision

o
N

0.0 I I 1 I
0.0 0.2 0.4 0.6 0.8 1.0

Recall
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Performance evaluation

PubChem
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* Comparison with other protein descriptor (vs CTD, similarity-based)
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Validation of extracted patterns

 Compare pooled convolution result with binding sites from sc-PDB

B
A HDQVHLLECAWLEILMIGLY ~ LFAPNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQ
WSs_20:
W5_25:
W5_30: . R
TCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTE " VWVPYEPPEVGSDCTTIHYN' } PPt ) e
WS_15 P ’ ,-‘.‘" “”u‘
WS_20: EYDPTRPFSEASMMGLLTNLADRELVHMINW®  QLLLILSHIRHMSNKGMEHLYSMKCKNVVP
ok ws_25: [0
i W5_30:
 cellular tumor antigen protein (P04637, * Estrogen receptor protein (P03372,
P53 _HUMAN) ESR1_HUMAN)

* Pooled convolution results covers actual binding site
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Summary (DTI)

Propose a CNN based DTI prediction model

The model show high prediction power in independent data
sets

The proposed model captures informative binding sites that
contribute DTls
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