

SOFTWARE SAFETY INTEGRITY AND SOFTWARE SYSTEMATIC CAPABILITY IN PROCESS INDUSTRY



SPRi Software Safety Conference

November 23, 2017 | Seoul, Republic of Korea

Presenter: Amir Moutameni Lead Engineer Safety Systems

- MS in Electrical Engineering
- Functional Safety Engineer by TUV Rheinland
- Professional engineer (P.Eng.)
- Project Management Professional (PMP)
- Honeywell Certified Safety Engineer
- 20 Years in Automation



# AGENDA

- Overview of Failure Types
- IEC 61508 / IEC 61511 Standards
- Safety Integrity
- Systematic Capability
- Management of Software Safety Integrity
- System Safety Lifecycle
- Software Safety Lifecycle
- Software Systematic Capability
- Management of Functional Safety



# **Introduction**

# Failure and Overview of Failure Types



Honeywell Confidential - © 2017 by Honeywell International Inc. All rights reserved.

# **Failure**

# FAILURE IS THE STATE OR CONDITION OF NOT MEETING A DESIRABLE OR INTENDED FUNCTION





## **Failure Types**

# A SYSTEM MAY FAIL TO FUNCTION AS REQUESTED DUE TO:

• RANDOM FAILURE

#### OR

# • SYSTEMATIC FAILURE



## **Random Failure**

- RELATED TO THE HARDWARE COMPONENTS
- DUE TO PHYSICAL CAUSE

ALSO OCCURS DUE TO VARIOUS RANDOM EVENTS SUCH AS:

- ABNORMAL PROCESS CONDITIONS
- CORROSION, THERMAL STRESSING, ...
- WEAR-OUT / TIRE-OUT
- LOW FREQUENCY ATMOSPHERIC EVENT (SNOW IN DESERT)
- NO PATTERN
- IS RANDOM!





### **Random Failure**

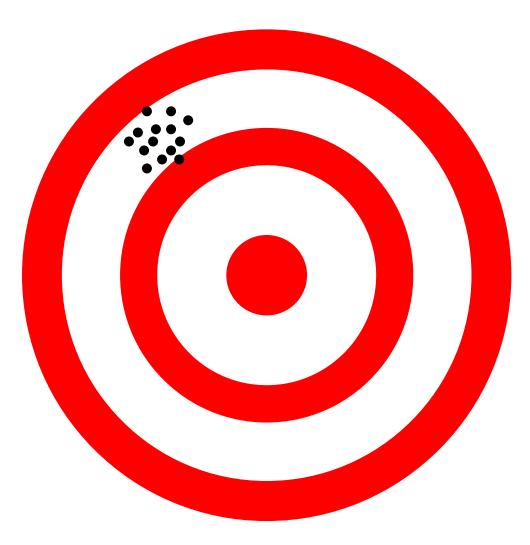




# **Systematic Failure**

- DUE TO A DETERMINISTIC WAY TO A ROOT CAUSE
- CAUSED BY HUMAN ERROR DURING:
  - > DESIGN
  - > SPECIFICATION
  - > DEVELOPMENT
  - > MANUFACTURE
  - > INSTALLATION
  - > OPERATION
  - > MAINTENANCE
  - > DECOMMISSIONING




# **Systematic Failure**

- PATTERN
- IMPOSSIBLE TO ANALYZE IN A PROBABILISTIC MANNER
- IS NOT CONSIDERED IN THE VERIFICATION CALCULATION (NOT PART OF PFD)

#### **CANNOT BE QUANTIFIED**



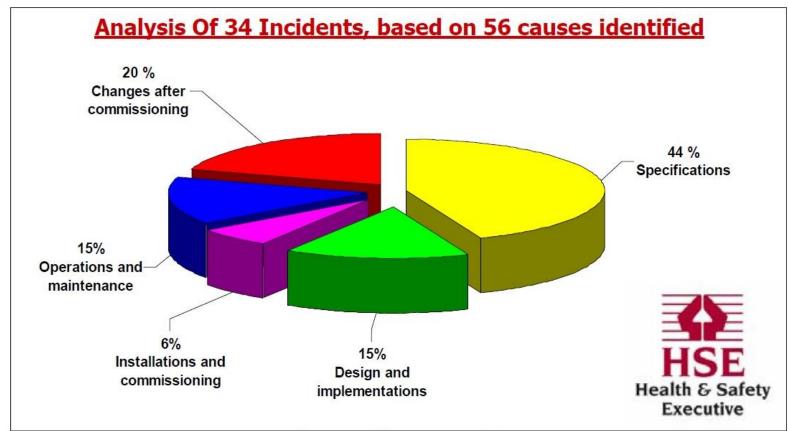
# **Systematic Failure**





### **Systematic vs. Random**



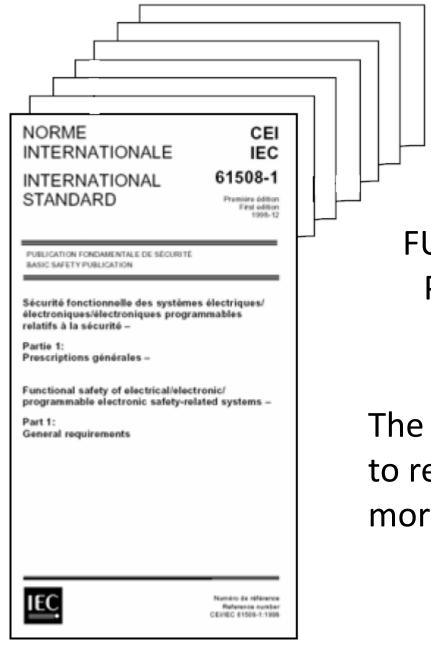

#### **35 MAJOR INCIDENTS BETWEEN 1987 AND 2012**

ANGEL CASAL. 2011, 'SIS PITFALLS, MAJOR ACCIDENTS AND LESSONS LEARNED'



Honeywell Confidential - © 2017 by Honeywell International Inc. All rights reserved.

#### **Systematic vs. Random**




#### **Out of control**

#### Why control systems go wrong and how to prevent failure?

(2<sup>nd</sup> edition, source: © Health & Safety Executive HSE – UK)



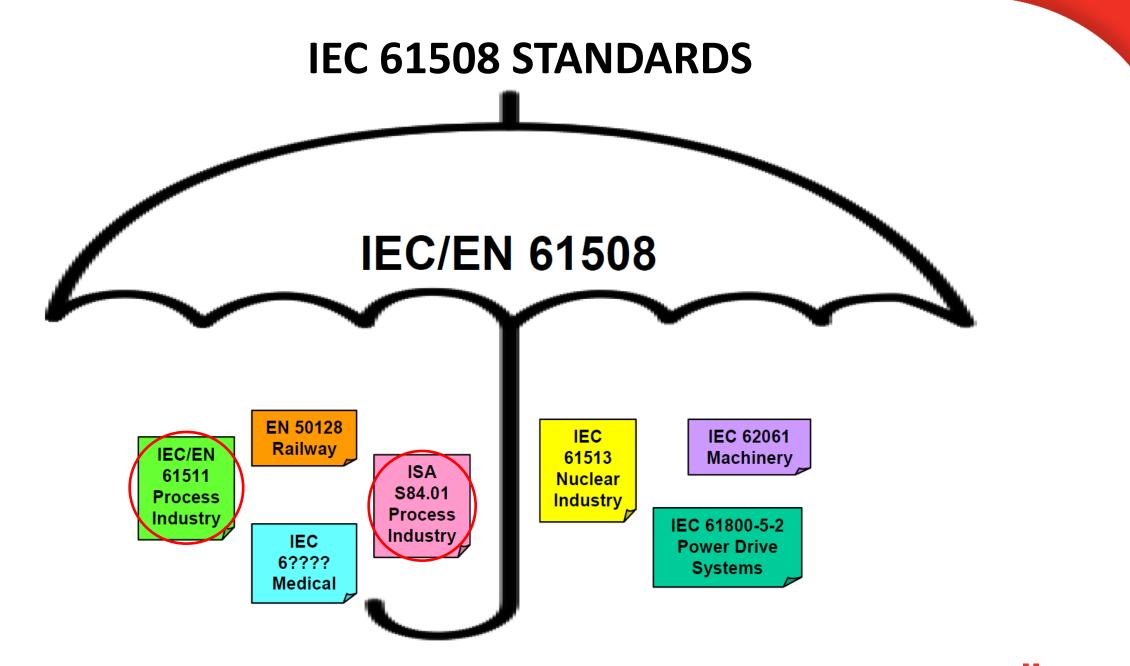


#### INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

#### FUNCTIONAL SAFETY OF ELECTRICAL/ELECTRONIC/ PROGRAMMABLE ELECTRONIC SAFETY-RELATED SYSTEMS (IEC-61508)

The standards were a natural evolution for the need to reduce process risk and improve safety through a more formalized and quantifiable methodology.

GM




### IEC 61508 Standards

SPECIFICALLY FOR IEC 61508, AS THE APPLICATION AND USAGE OF SOFTWARE HAS EVOLVED AND PROLIFERATED, THERE WAS AN INCREASED NEED TO DEVELOP A STANDARD TO GUIDE SYSTEM / PRODUCT DESIGNERS AND DEVELOPERS IN WHAT THEY NEEDED TO DO TO ENSURE AND "CLAIM" THAT THEIR SYSTEMS / PRODUCTS WERE ACCEPTABLY SAFE FOR THEIR INTENDED USES.

GΜ



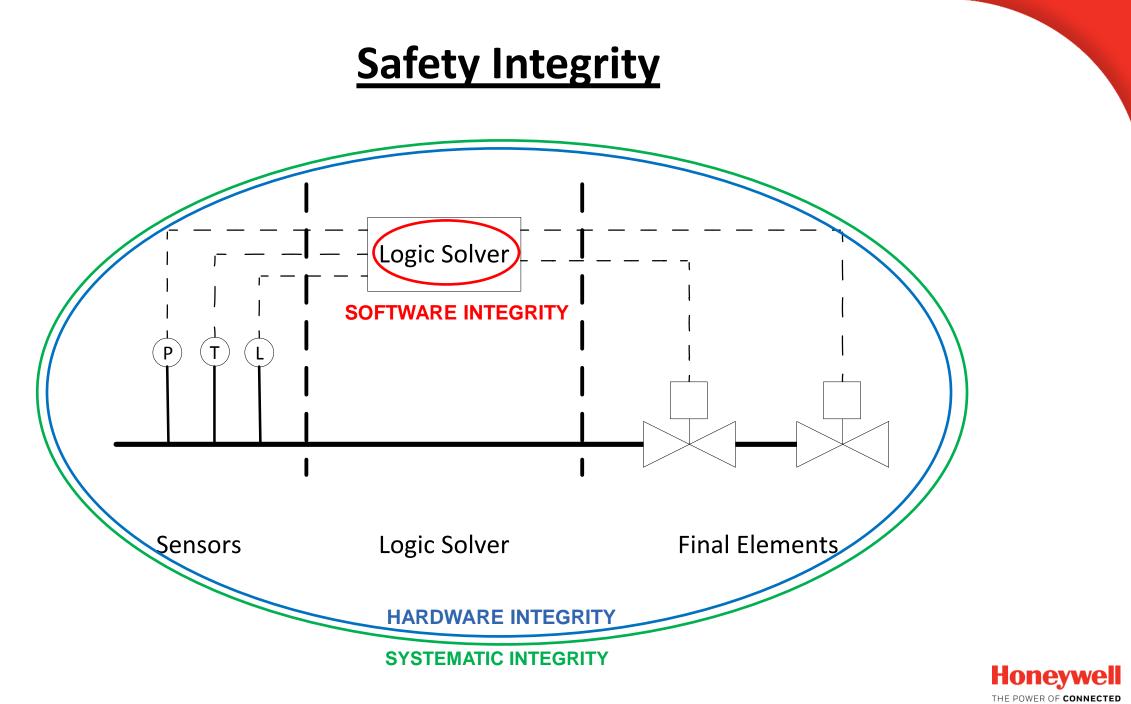


Honeywell

#### **Safety Integrity**

**ACHIEVEMENT SAFETY INTEGRITY** 

TARGET RISK REDUCTION


IEC 61511.1—2016: AVERAGE PROBABILITY OF A SAFETY INSTRUMENTED SYSTEM SATISFACTORILY PERFORMING THE REQUIRED SAFETY INSTRUMENTED FUNCTIONS UNDER ALL THE STATED CONDITIONS WITHIN A STATED PERIOD OF TIME

#### SAFETY INTEGRITY COMPRISES:

<u>HARDWARE SAFETY INTEGRITY</u> (RELATED TO RANDOM FAILURE)

AND

<u>SYSTEMATIC SAFETY INTEGRITY – INCLUDING SOFTWARE SAFETY INTEGRITY-</u> (RELATED TO **SYSTEMATIC FAILURE**)



# **Systematic Safety Integrity**

SYSTEMATIC SAFETY INTEGRITY (AND SOFTWARE SAFETY INTEGRITY) IS TO DO WITH THE MANAGEMENT OF SYSTEMATIC FAILURES:

IEC 61511.1—2016: 3.5.5 SOFTWARE SAFETY INTEGRITY PART OF SAFETY INTEGRITY OF A SAFETY-RELATED SYSTEM RELATING TO SYSTEMATIC FAILURE IN A DANGEROUS MODE OF FAILURE THAT ARE ATTRIBUTABLE TO SOFTWARE

3.5.6 SYSTEMATIC SAFETY INTEGRITY PART OF THE SAFETY INTEGRITY OF A SAFETY-RELATED SYSTEM RELATING TO SYSTEMATIC FAILURES IN A DANGEROUS MODE OF FAILURE



# **Safety Integrity Level (SIL)**

HOW MUCH RISK REDUCTION REQUIRED?

4 LEVEL OF SAFETY INTEGRITY DEFINED BY IEC 61508-2010 : SIL 1 TO SIL 4





# **Systematic Capability (SC)**

- THE SYSTEMATIC SAFETY INTEGRITY OF AN ELEMENT MEETS THE REQUIREMENTS OF THE SPECIFIED SIL
- IS DETERMINED WITH REFERENCE TO THE REQUIREMENTS FOR THE AVOIDANCE AND CONTROL OF SYSTEMATIC FAULTS
- MEASURE ON A SCALE OF SC 1 TO SC 4

# SIL X REQUIRES SC X

#### FOR A SIL N SIF WE NEED SC N SYSTEMATIC CAPABILITY IN OUR ENGINEERING AND IN OUR SOFTWARE.



# **Achieving Systematic Capability**

- ROUTE 1<sub>S</sub>: COMPLIANCE WITH THE REQUIREMENTS FOR THE <u>AVOIDANCE</u> OF SYSTEMATIC FAULTS AND THE REQUIREMENTS FOR THE <u>CONTROL</u> OF SYSTEMATIC FAULTS
- ROUTE 2<sub>S</sub>: COMPLIANCE WITH THE REQUIREMENTS FOR EVIDENCE THAT THE EQUIPMENT IS PROVEN IN USE
- ROUTE 3<sub>S</sub>: COMPLIANCE WITH THE REQUIREMENTS OF IEC 61508.3-2010,
   7.4.2.12 (PRE-EXISTING SOFTWARE ELEMENTS ONLY)



# Route 1<sub>s</sub>

- 1. AVOIDANCE OF SYSTEMATIC FAULTS (IEC 61508.2-2010 ANNEX B)
  - a) TABLE B.1 TECHNIQUES AND MEASURES TO AVOID MISTAKES DURING SPECIFICATION OF SYSTEM DESIGN REQUIREMENTS
  - b) TABLE B.2 TECHNIQUES AND MEASURES TO AVOID INTRODUCING FAULTS DURING SYSTEM DESIGN AND DEVELOPMENT
  - c) TABLE B.3 TECHNIQUES AND MEASURES TO AVOID FAULTS DURING SYSTEM INTEGRATION
  - d) TABLE B.4 TECHNIQUES AND MEASURES TO AVOID FAULTS AND FAILURES DURING SYSTEM OPERATION AND MAINTENANCE
  - e) TABLE B.5 TECHNIQUES AND MEASURES TO AVOID FAULTS DURING SYSTEM SAFETY VALIDATION
- 2. CONTROL OF SYSTEMATIC FAULTS (IEC 61508.2-2010- ANNEX A)
  - a) TABLE A.15 TECHNIQUES AND MEASURES TO CONTROL SYSTEMATIC FAILURES CAUSED BY HARDWARE DESIGN
  - b) TABLE A.16 TECHNIQUES AND MEASURES TO CONTROL SYSTEMATIC FAILURES CAUSED BY ENVIRONMENTAL STRESS OR INFLUENCES
  - c) TABLE A.17 TECHNIQUES AND MEASURES TO CONTROL SYSTEMATIC OPERATIONAL FAILURES





Table B.6 (continued)

dures

| Technique/measure              | See<br>IEC 61508-7 | Low effectiveness                                                                                                                          | High effectiveness                                                                                                                                                                                                     |
|--------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dynamic analysis               | B.6.5              | Based on block diagrams;<br>highlighting weak points;<br>specifying test cases                                                             | Based on detailed diagrams; predicting expected behaviour during test cases; using testing tools                                                                                                                       |
| Failure analysis               | B.6.6              | At module level, including<br>boundary data of the peripheral<br>units                                                                     | At component level, including boundary<br>data                                                                                                                                                                         |
| Worst-case analysis            | B.6.7              | Performed on safety functions;<br>derived using boundary value<br>combinations for real operating<br>conditions                            | Performed on non-safety functions;<br>derived using boundary value<br>combinations for real operating<br>conditions                                                                                                    |
| Expanded functional<br>testing | B.6.8              | Test that all safety functions are<br>maintained in the case of static<br>input states caused by faulty<br>process or operating conditions | Test that all safety functions are<br>maintained in the case of static input<br>states and/or unusual input changes,<br>caused by faulty process or operating<br>conditions (including those that may be<br>very rare) |
| Worst-case testing             | B.6.9              | Test that safety functions are<br>maintained for a combination of<br>boundary values found in real<br>operating conditions                 | Test that non-safety functions are<br>maintained for a combination of the<br>boundary values found in real operating<br>conditions                                                                                     |
| Fault insertion testing        | B.6.10             | At subunit level including<br>boundary data or the peripheral<br>units                                                                     | At component level including boundary data                                                                                                                                                                             |



| T;                    |                                                                                                 | 10                 | control systematic failures                                                                                                                                                                        |                                                                                                                                                                                                | r influences                 |                   |           |
|-----------------------|-------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|-----------|
| Table A.1             | Technique/measure                                                                               | See<br>IEC 61508-7 | Low effectiveness                                                                                                                                                                                  | High effectiveness                                                                                                                                                                             | SIL 4                        | ware design       | 1         |
| Techn                 | Failure detection by<br>on-line monitoring<br>(see Note)                                        | A.1.1              | Trigger signals from the EUC and<br>its control system are used to<br>check the proper operation of the<br>E/E/PE safety-related systems<br>(only time behaviour with an upper<br>time limit)      | E/E/PE safety-related systems are<br>retriggered by temporal and logical<br>signals from the EUC and its control<br>system (time window for temporal<br>watch-dog function)                    | M<br>high                    | SIL3              | SIL4      |
| Table 4               | Tests by redundant<br>hardware<br>(see Note)                                                    | A.2.1              | Additional hardware tests the<br>trigger signals of the E/E/PE<br>safety-related systems (only time<br>behaviour with an upper time<br>limit), this hardware switches a<br>secondary final element | Additional hardware is retriggered<br>by temporal and logical signals of<br>the E/E/PE safety-related systems<br>(time window for temporal watch-<br>dog); voting between multiple<br>channels | tional f                     | ailures           |           |
| Techniqu              | Standard test<br>access port and<br>boundary-scan<br>architecture                               | A.2.3              | Testing the used solid-state logic,<br>during the proof test, through<br>defined boundary scan tests                                                                                               | Diagnostic test of solid-state logic,<br>according to the functional<br>specification of the E/E/PE safety-<br>related systems; all functions are<br>checked for all integrated circuits       | L 2                          | SIL 3             | SIL 4     |
| Modification protec   | Code protection                                                                                 | A.6.2              | Failure detection via time<br>redundancy of signal transmission                                                                                                                                    | Failure detection via time and<br>information redundancy of signal<br>transmission                                                                                                             | Л                            | М                 | М         |
|                       | Measures against<br>voltage breakdown,<br>voltage variations,<br>overvoltage and low<br>voltage | A.8                | Overvoltage protection with safety<br>shut-off or switch-over to<br>secondary power unit                                                                                                           | Voltage control (secondary) with<br>safety shut-off or switch-over to<br>secondary power unit; or<br>power-down with safety shut-off or<br>switch-over to secondary power unit                 | diu<br>n                     | high              | high      |
| Failure detection by  | Program sequence<br>monitoring                                                                  | A.9                | Temporal or logical monitoring of<br>the program sequence                                                                                                                                          | Temporal and logical monitoring<br>of the program sequence at very<br>many checking points in<br>the program                                                                                   | R<br>W                       | R<br>medium       | R<br>high |
| Input acknowledgei    | Measures against<br>temperature<br>increase                                                     | A.10               | Detecting over-temperature                                                                                                                                                                         | Actuation of the safety shut-off via<br>thermal fuse; or<br>several levels of over-temperature<br>sensing and alarms; or<br>connection of forced-air cooling and<br>status indication          | R<br>W                       | R<br>medium       | R<br>high |
| Failure assertion pro | Increase of<br>interference<br>immunity<br>(see Note)                                           | A.11.3             | Noise filter at power supply and<br>critical inputs and outputs;<br>shielding, if necessary                                                                                                        | Filter against electromagnetic<br>injection that is normally not<br>expected; shielding                                                                                                        | $\frac{2 \text{ and } 0}{R}$ | C.2 of IEC 6<br>⊣ | 1508-3    |
|                       | Measures against<br>physical<br>environment                                                     | A.14               | Generally accepted practice<br>according to the application                                                                                                                                        | Techniques referred to in standards<br>for a particular application                                                                                                                            | high<br>R                    | _                 |           |
|                       | Diverse hardware                                                                                | B.1.4              | Two or more items carrying out the<br>same function but being different<br>in design                                                                                                               | Two or more items carrying out<br>different functions                                                                                                                                          | high<br>R                    | _                 |           |
|                       | Modification<br>protection                                                                      | B.4.8              | Modification requires specific tools                                                                                                                                                               | Modification requires use of key<br>lock or dedicated tool with<br>password                                                                                                                    | high<br>R<br>high            | -                 |           |
|                       | Input<br>acknowledgement                                                                        | B.4.9              | Echoing of input actions back to the operator                                                                                                                                                      | Checking strict rules for the input of<br>data by the operator, rejecting<br>incorrect inputs                                                                                                  | R<br>high                    | —                 |           |
|                       |                                                                                                 |                    | with references A.1.1, A.2.1, A.11.3<br>that the low effectiveness approache                                                                                                                       | 3, and A.14 for high effectiveness of                                                                                                                                                          | 508-3                        |                   |           |



#### IEC 61508.7-2010 B.1.1 Project management

Aim: To avoid failures by adoption of an organizational model and rules and measures for development and testing of safety-related systems.

Description: The most important and best measures are

- The creation of an organizational model, especially for quality assurance which is set down in a quality assurance handbook; and
- The establishment of regulations and measures for the creation and validation of safety related systems in cross-project and project-specific guidelines.

A number of important basic principles are set down in the following:

- Definition of a design organization:
- tasks and responsibilities of the organizational units,
- authority of the quality assurance departments,
- independence of quality assurance (internal inspection) from development;
- Definition of a sequence plan (activity models):
- determination of all activities which are relevant during execution of the project including internal inspections and their scheduling,
- project update;
- Definition of a standardized sequence for an internal inspection:
- planning, execution and checking of the inspection (inspection theory),
- releasing mechanisms for sub-products,
- the safekeeping of repeat inspections;
- Configuration management:
- administration and checking of versions,
- detection of the effects of modifications,
- consistency inspections after modifications;
- Introduction of a quantitative assessment of quality assurance measures:
- requirement acquisition,
- failure statistics;
- Introduction of computer-aided universal methods, tools and training of personnel.



# MANAGEMENT OF SOFTWARE INTEGRITY TECHNIQUES AND MEASURES

61508.3-2010 ANNEX A

- TABLE A.1 SOFTWARE SAFETY REQUIREMENTS SPECIFICATION
- TABLE A.2 SOFTWARE ARCHITECTURE DESIGN
- TABLE A.3 SUPPORT TOOLS & PROGRAMMING LANGUAGE
- TABLE A.4 SOFTWARE DETAILED DESIGN
- TABLE A.5 SOFTWARE MODULE TESTING & INTEGRATION
- TABLE A.6 HARDWARE AND SOFTWARE INTEGRATION
- TABLE A.7 SYSTEM SAFETY VALIDATION
- TABLE A.8 MODIFICATION
- TABLE A.9 SOFTWARE VERIFICATION
- TABLE A.10 FUNCTIONAL SAFETY ASSESSMENT



# MANAGEMENT OF SOFTWARE INTEGRITY DETAILED TABLES

61508.3-2010 ANNEX B

- TABLE B.1 DESIGN AND CODING STANDARDS
- TABLE B.2 DYNAMIC ANALYSIS AND TESTING
- TABLE B.3 FUNCTIONAL AND BLACK-BOX TESTING
- TABLE B.4 FAILURE ANALYSIS
- TABLE B.5 MODELLING
- TABLE B.6 PERFORMANCE TESTING
- TABLE B.7 SEMI-FORMAL METHODS
- TABLE B.8 STATIC ANALYSIS
- TABLE B.9 MODULAR APPROACH



#### **GUIDE TO THE SELECTION OF TECHNIQUES AND MEASURES**

#### Table A.9 – Software verification

#### Table A.10 – Functional safety assessment

| Assessment/Technique *                                                                          |                                                                                                                        | Ref.          | SIL 1 | SIL 2 | SIL 3 | SIL 4 |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------|-------|-------|-------|-------|--|
| 1                                                                                               | Checklists                                                                                                             | B.2.5         | R     | R     | R     | R     |  |
| 2                                                                                               | Decision/truth tables                                                                                                  | C.6.1         | R     | R     | R     | R     |  |
| 3                                                                                               | Failure analysis                                                                                                       | Table B.4     | R     | R     | HR    | HR    |  |
| 4                                                                                               | Common cause failure analysis of diverse software (if diverse software is actually used)                               | C.6.3         |       | R     | HR    | HR    |  |
| 5                                                                                               | Reliability block diagram                                                                                              | C.6.4         | R     | R     | R     | R     |  |
| 6                                                                                               | Forward traceability between the requirements of<br>Clause 8 and the plan for software functional safety<br>assessment | C.2.11        | R     | R     | HR    | HR    |  |
| 1                                                                                               | · · · ·                                                                                                                |               |       |       |       |       |  |
| Programmable electronics integration testing                                                    |                                                                                                                        | See Table A.6 |       |       |       |       |  |
| Software system testing (validation)                                                            |                                                                                                                        | See Table A.7 |       |       |       |       |  |
|                                                                                                 | specification                                                                                                          |               |       |       |       |       |  |
| Forward traceability between the software safety requirements specification and software design |                                                                                                                        | C.2.11        | R     | R     | HR    | HR    |  |

Honeywell The power of connected

U.2.0.3

пп

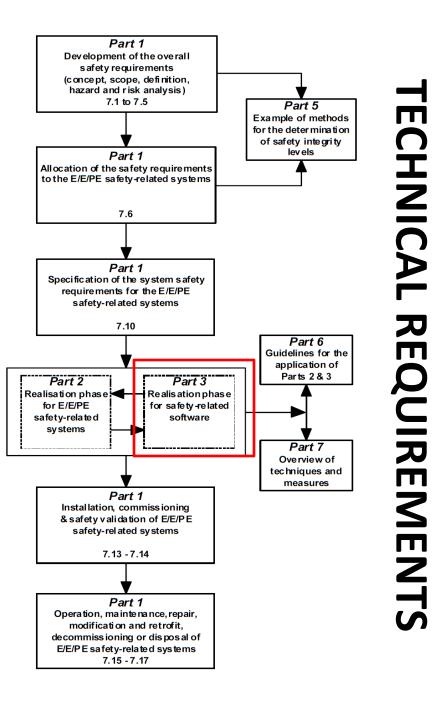
10

I Static Synchronisation of access to shared resources

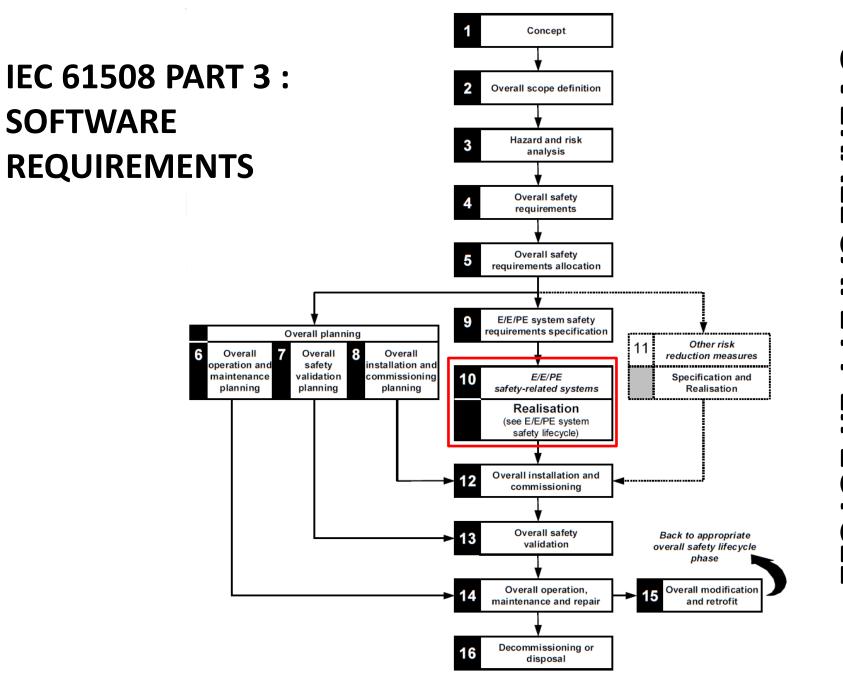
# **Detailed Tables**

 Table B.8 – Static analysis

(Referenced by Table A.9)


 Table B.9 – Modular approach

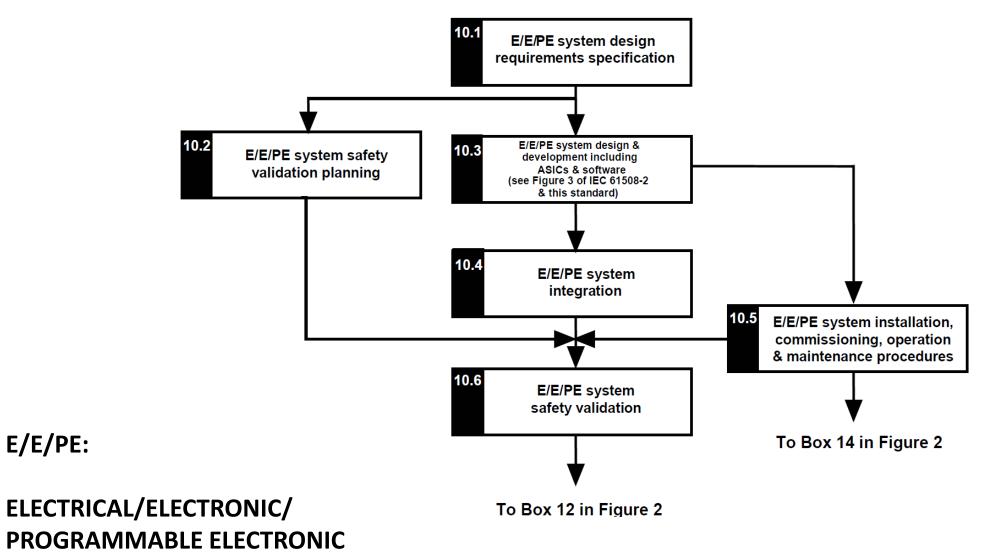
#### (Referenced by Table A.4)


|   | Technique/Measure *                                            | Ref    | SIL 1 | SIL 2 | SIL 3 | SIL 4 |
|---|----------------------------------------------------------------|--------|-------|-------|-------|-------|
| 1 | Software module size limit                                     | C.2.9  | HR    | HR    | HR    | HR    |
| 2 | Software complexity control                                    | C.5.13 | R     | R     | HR    | HR    |
| 3 | Information hiding/encapsulation                               | C.2.8  | R     | HR    | HR    | HR    |
| 4 | Parameter number limit / fixed number of subprogram parameters | C.2.9  | R     | R     | R     | R     |
| 5 | One entry/one exit point in subroutines and functions          |        | HR    | HR    | HR    | HR    |
| 6 | Fully defined interface                                        | C.2.9  | HR    | HR    | HR    | HR    |
| 1 | 0 Worst-case execution time analysis                           | C.5.20 | R     | R     | R     | R     |



#### IEC 61508 PART 3 : SOFTWARE REQUIREMENTS

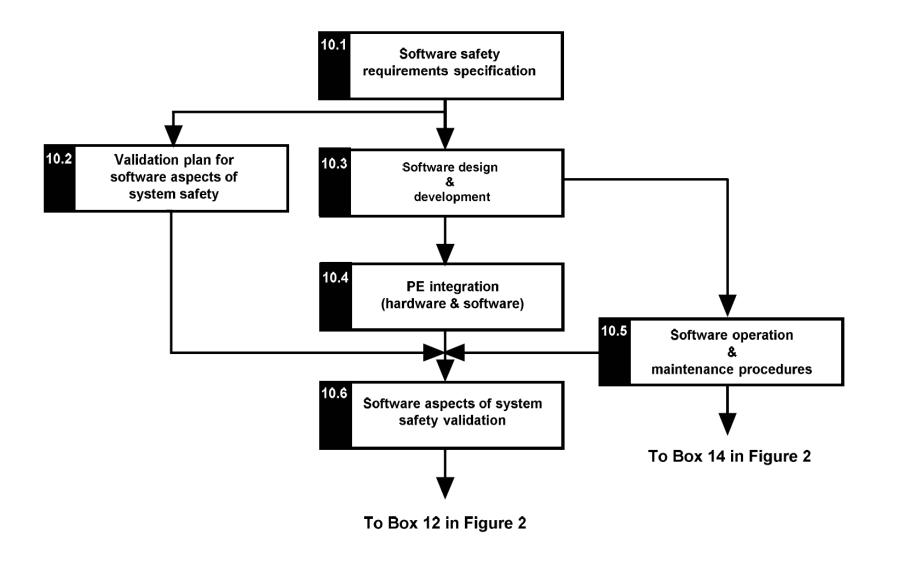






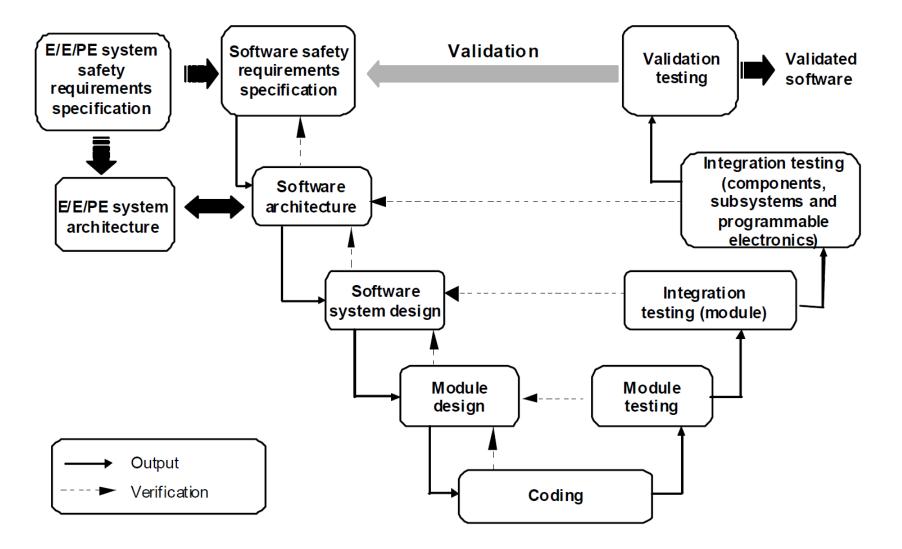






# **E/E/PE SYSTEM SAFETY LIFECYCLE**



E/E/PE:




## SOFTWARE SAFETY LIFECYCLE





#### SOFTWARE SYSTEMATIC CAPABILITY AND THE DEVELOPMENT LIFECYCLE (THE V-MODEL)



Honeywell

#### AVOIDANCE AND CONTROL OF SYSTEMATIC FAULTS ARE SIGNIFICANTLY MORE DIFFICULT IN COMPARE TO RANDOM FAULTS

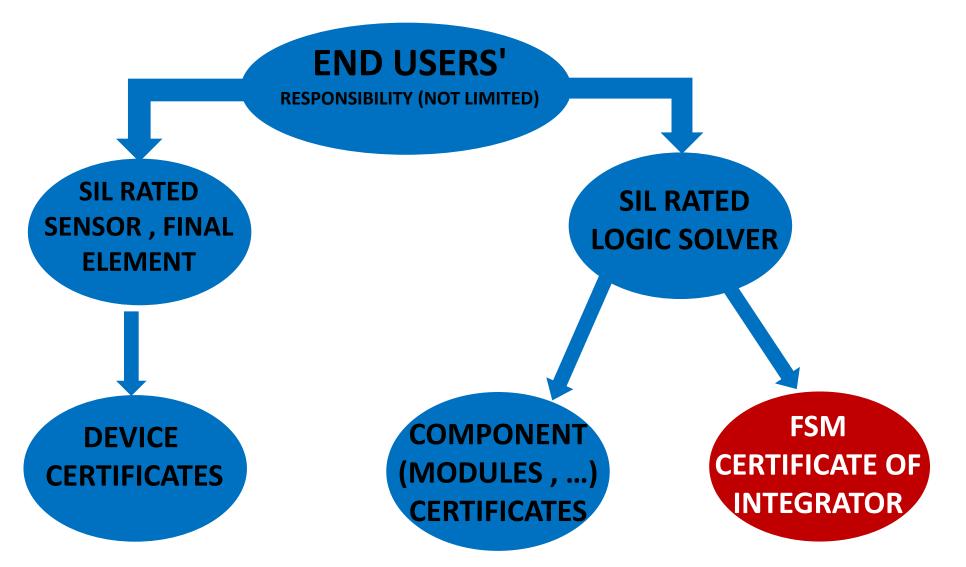


#### SAFETY LIFECYCLE








# AT DIFFERENT PARTS OF THE SAFETY LIFE CYCLE, DIFFERENT PARTIES ARE RESPONSIBLE FOR THE FSM

# OVERALL IS ALWAYS END USER



Honeywell Confidential - © 2017 by Honeywell International Inc. All rights reserved.

#### **EXAMPLE: SELECTION OF SIS ELEMENTS**







The manufacturer may use the mark:

CERTIFIE

Surveillance Audit Due

July 1, 2019

ANSI

ANSI Accredited Program PRODUCT CERTIFICATION #1004 Certificate / Certificat Zertifikat / 合格証

exida hereby confirms that the:

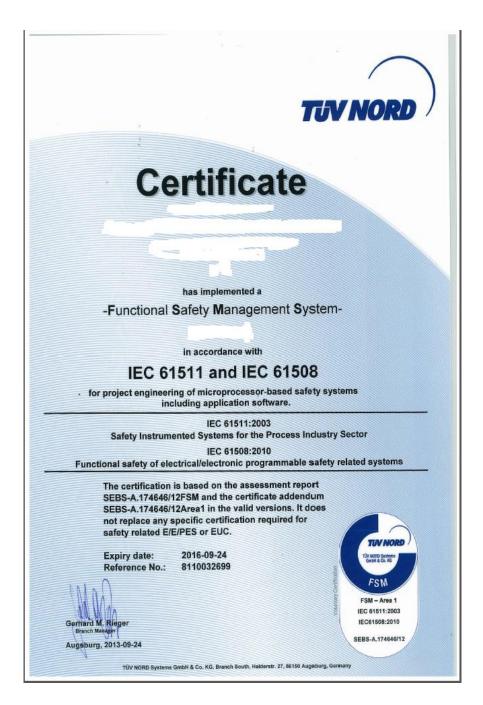
Level Transmitter

Has been assessed per the relevant requirements of: IEC 61508 : 2010 Parts 1-7 and meets requirements providing a level of integrity to: Systematic Capability: SC 3 (SIL 3 Capable) Random Capability: Type B Element SIL 2 @ HFT=0; SIL 3 @ HFT = 1; Route 2<sub>H</sub> PFD<sub>AVG</sub> and Architecture Constraints

> Safety Function: The Eclipse 706GWR Level Transmitter will measure level and transmit a corresponding signal within the stated safety accuracy.

must be verified for each application

Application Restrictions:


The unit must be properly designed into a Safety Instrumented Function per the Safety Manual requirements.



Certifying Assessor

Page 1 of 2







Honeywell Confidential - © 2017 by Honeywell International Inc. All rights reserved.

### **QUESTIONS?**

