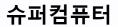

국가 슈퍼컴퓨팅 역량 강화 방안

2017. 4. 25.

추 형 석

기술・공학연구실

소프트웨어정책연구소



목 차

- 1. 배 경
- 2. 슈퍼컴퓨팅 국내외 현황
 - ㆍ해외 현황
 - ㆍ국내 현황
- 3. 국가 슈퍼컴퓨팅 역량 강화 방안
- 4. 결 론

경 배

F1 레이싱카

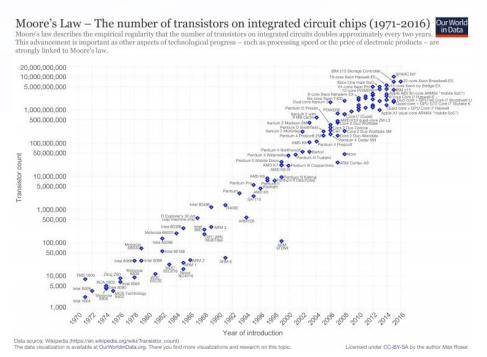
배경

● 슈퍼컴퓨터 관련 기술

HW 및 시스템

- 시스템 설계 및 구축
- 인터커넥션 네트워크 인터페이스
- 네트워크 라우팅/관리
- HW 구축

SW


- 운영체제
- 파일시스템
- 프로그래밍 도구
- 라이브러리
- 시스템 운영관리
- 지원관리/스케쥴링

응용분야

- 핵 융합
- 기후 예측
- 분자동역학
- 멀티피직스
- 단백질 접합
- 천체물리학 등

슈퍼컴퓨팅 해외 현황

- 무어의 법칙의 종말?
 - · 무어의 법칙은 연산처리장치의 지수적인 성능발전을 설명하는 이론으로 18개월 마다 성능이 2배 증가 (약 50년 간 지속)
 - · 트랜지스터 생산 공정은 양자터널링이 발생할 가능성이 있는 10nm미만으로 진행되고 있으나 성능이 2배가 되는 시점이 18개월 이상 소요

MIT Technology Review

Intelligent Machines

Moore's Law Is Dead. Now What?

슈퍼컴퓨팅 해외 현황

- 엑사스케일 컴퓨팅 (Exascale Computing)
 - · 초당부동소수점연산수(Floating-point operation per second, FLOP/s)는 슈퍼컴퓨터의 성능 비교를 위해 사용되는 척도
 - 엑사플롭스는 초당 1백경 연산을 처리할 수 있는 지표 (PC 1백만 대 수준)
 - · 세계 1위의 슈퍼컴퓨터를 단순히 확대해서 엑사스케일 산출 시 소모전력은 123MW
 - 2016년 11월 기준 1위 슈퍼컴퓨터는 125PFLOP/s 성능보유 (소모전력 15.37MW)
 - 2016년 11월 기준 전력효율이 가장 좋은 슈퍼컴퓨터로 계산해 보면 71MW 필요
 - · 엑사스케일 컴퓨팅 시스템의 목표는 저전력 (20MW 내외 구성)
 - · 또한 엑사스케일 컴퓨팅의 활용 측면에서의 난제*가 산재한 상태이므로, 이를 효율적으로 해결할 수 있는 SW 기술이 필요
 - 예) 10억 개 이상의 병렬처리를 동시에 처리해야 하는 문제, HW 아키텍처에 대한 지식 없이 도 병렬처리 효율성이 높은 프로그래밍 툴
 - · 엑사스케일 환경에서의 응용 분야 문제를 사전 기획하고, 이를 구현하기 위한 SW와 HW기술이 긴밀한 협업이 필요

슈퍼컴퓨팅 해외 현황 (미국)


● 엑사스케일 컴퓨팅을 위한 철저한 준비

The Opportunities and Challenges of Exascale Computing



DARPA

2008

ASCAC 2010

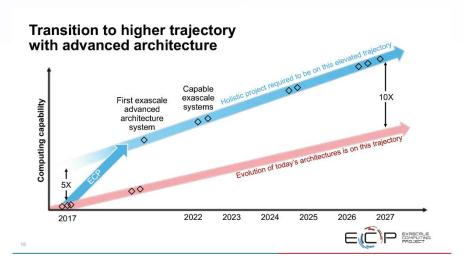
ASCAC 2014

ASCAC 2015

주요내용

World First Petascale Machine IBM Roadrunner (2008)

- Challenge 과제 도출 (전력, 메모리, 병렬처리, 회복력)
- 응용분야와 연계한 개발 체계 강조
- 기술발전을 반영한 요구사항 구체화


Computing **Project** (2016)

National Strategic Computing Initiative (2015)

Exascale

슈퍼컴퓨팅 해외 현황 (미국)

- 엑사스케일 컴퓨팅 프로젝트 발족 (ECP)
 - · 대통령 직속 국가전략컴퓨팅 이니셔티브(2015.07.29.)는 미국의 경제력과 과학적 발견을 뒷받침하는 고성능컴퓨팅(High Performance Computing, HPC) 기술 진흥 을 목적으로 창설 → 이를 수행하기 위한 수단으로 ECP 발족
 - · 7년 기간 동안 약 35 ~ 57억 달러(4조 ~ 6조 5천억 원)의 정부 투자 예상
- 총체적(holistic) 혁신을 달성하기 위한 4대 핵심과제

분 야	세 부 내 용
	- 현존하는 시스템 보다 1000배 많은 10억 개의 프로세스 동
병렬 처리	시 처리기술
	- 가상의 엑사스케일 시스템을 기반으로 병렬 처리 SW 구현
메모리	- 데이터 과학, 기계학습을 위한 빅데이터의 효율적인 처리
	- 메모리 용량, 대역폭 등을 개선 (저전력)
오류 복원	- 엑사스케일 컴퓨팅의 대규모 병렬처리, 대규모 메모리
	시스템의 오류를 최소화 하기 위한 SW 기술
에너지 소비	- 약 10~20MW 수준으로 엑사스케일 시스템 구현 목표
	- 에너지 소비에 직접적인 관련이 있는 HW 뿐만 아니라,
	SW 측면에서의 에너지 절감 연구

슈퍼컴퓨팅 해외 현황 (미국)

● ECP의 철학 : Co-design

- · 단순한 HW의 성능으로 엑사스케일 환경을 구현할 수 있다고 해도, 이것을 활용하기 위한 SW기술, 나아가 응용분야에의 적용에 대한 기술적 차이(Gap)가 매우 큼
- · 따라서 ECP는 엑사스케일 환경을 십분 활용하기 위해 HW, SW, 응용분야가 서로 유기적인 협업(Co-design)을 강조
- · 먼저 미국 에너지부 산하의 응용분야에서 엑사스케일 컴퓨팅을 활용하여 해결하고 자 하는 문제의 범위 정립하고, 문제를 해결하기 위한 요구사항을 SW와 HW 연구 과제에 반영
- · 엑사스케일은 초고성능 병렬처리를 요구하므 이를 해결할 수 있는 SW 선행연구가 필요
- · 미국은 세계 최고의 기술력을 보유한 HPC 산업생태계를 바탕으로, 응용분야와 SW가 요구하는 HW 설계 진행

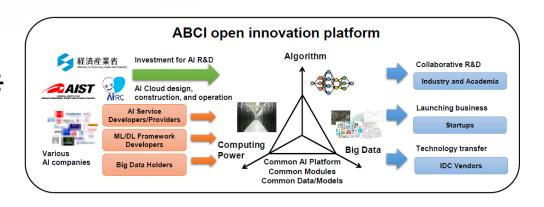
슈퍼컴퓨팅 해외 현황 (중국)

- 최근 중국의 슈퍼컴퓨팅 기술은 양적·질적으로 크게 발전함에 따라,
 현재 중국의 세계 슈퍼컴퓨터 점유율은 미국과 대등
 - · 중국은 막대한 자금력으로 미국의 슈퍼컴퓨터를 도입했으나, 이에 위기를 경험한 미국이 슈퍼컴퓨터를 전략 제품으로 지정하여 중국으로의 수출을 제재 (2015)
 - 그러나 중국은 2006년부터 연산처리장치 개발에 지속적으로 투자하여 2016년 세계 최고의 슈퍼컴퓨터 '선웨이 타이후라이트' 개발에 성공
 - · 중국은 슈퍼컴퓨팅의 기술적 독립을 성공하여 미국 일변도의 HPC 생태계에 위협적인 존재로 자리매김
- 세계 최고의 슈퍼컴퓨터 '선웨이 타이후라이트'


이론 성능치	125,436 Tera Flop/s	파워	15,371 kW
실측 성능치	93,014.6 Tera Flop/s	연산처리장치	Sunway SW26010 (260 cores) 1.45 GHz
메모리	1,310,720 Gigabyte	운영체제	Sunway RaiseOS 2.0.5

슈퍼컴퓨팅 해외 현황 (중국)

- 엑사스케일 컴퓨팅 경쟁 대열에 합류
 - · 2017년 중국은 엑사스케일 프로토타입 시스템 공개 예정이고, 현재까지 언급된 정보를 토대로 봤을 때 범용DSP나 ARM기반 연산처리장치가 탑재될 가능성이 높음
 - 디지털 신호처리장치(Digital Signal Processor)로 슈퍼컴퓨터에서는 SIMD 형태
 - · 이 프로토타입을 활용해 2020년까지 엑사스케일 컴퓨팅 환경 확보를 목표
- 중국의 숙제 슈퍼컴퓨팅과 과학기술 R&D
 - · 중국이 비약적인 성장으로 세계 정상을 차지했으나, 과학기술 경쟁력은 여전히 미국에 열세
 - · 표면상으로 중국은 슈퍼컴퓨터 점유율의 측면에서 미국과 비슷하지만, 중국의 슈퍼 컴퓨터는 산업계의 데이터 센터나 클라우드에 집중
 - 미국은 과학기술을 주도하는 국책연구소나 대학위주의 슈퍼컴퓨터 분포 ※ 구글의 컴퓨팅 인프라는 top500에 등록하지 않음


슈퍼컴퓨팅 해외 현황 (일본)

- 엑사스케일 컴퓨팅 프로젝트 Flagship 2020 (Post-K Computer)
 - · 일본 역시 미국과 마찬가지로 Co-design의 철학을 강조하여 슈퍼컴퓨터 개발과 응용분야의 긴밀한 협업을 추진
 - 투입 예산은 총 1,100억 엔(1조 1453억 원)이며 목표 소모전력은 20~30MW
 - · Flagship 2020에서는 9대 응용분야*를 선정하여 사회적·국가적 견지에서 높은 의의가 있는 문제 해결
 - 헬스케어, 재난 예측, 에너지 과학, 산업경쟁력 강화, 기초과학 등
 - · 2020년 Post-K 컴퓨터 운영을 목표로 했으나, 최근 연산처리장치 개발상의 난제와 제조 가격의 상승 등 무어의 법칙에서 벗어나는 현상으로 2021년 하반기 운용을 목표

슈퍼컴퓨팅 해외 현황 (일본)

- 일본은 특히 슈퍼컴퓨터급 인공지능 인프라 확보에 주력
 - · 미국과 중국은 글로벌 IT 기업(구글, 바이두 등)이 인공지능 연구에 적극적인 행보를 보이며 선도하고 있으나, 일본은 이러한 역할을 수행할 기업 부족
 - ・따라서 일본 정부는 인공지능 컴퓨팅 환경조성을 토대로 자국 내 인공지능 연구개발 경쟁력과 생태계 형성에 기여를 목표
 - · (ABCI) 일본의 경제산업성이 195억 엔의 예산을 투입하여 130PetaFlop/s와 3MW 를 만족하는 인공지능 전용 클라우드 인프라 조성 예정 (2018년 1분기)
 - (TSUBAME 3.0) 도쿄공업대학에 half-precision기준 47PetaFlop/s의 성능을 구축, 인공지능 전용으로 활용
 - · (AIP RINKEN) 이화학연구소에서 인공지능 전용 4PetaFlop/s 인프라 구축 예정

슈퍼컴퓨팅 국내 현황

- 국가 초고성능컴퓨터 활용 및 육성에 관한 법률 (2011)
 - ㆍ(목적) 국가초고성능컴퓨터의 효율적인 구축과 체계적인 관리를 통하여 지속가능한 활용을 도모하고 과학기술의 발전 기반을 조성함으로써 국민의 삶의 질 향상과 국가경제 발전에 이바지함
 - ※ 초고성능컴퓨터법 제1장 1조
- 제1차 국가초고성능컴퓨팅 육성 기본계획
 - · 3대 전략 10대 과제

3대 전략	10대 전략과제
	과제 1. 국가초고성능컴퓨팅 활용 국가연구개발 활성화
초고성능컴퓨팅 활용 확대	과제 2. 초고성능컴퓨팅을 활용한 산업 혁신 강화
	과제 3. 초고성능컴퓨팅 기반 공공·민간 응용 서비스 확대
	과제 4. 초고성능컴퓨팅 이해 확산을 위한 국민 참여활동 확대
초고성능컴퓨팅 서비스 기반 강화	과제 5. 미래수요 대응 초고성능컴퓨팅 자원 확보
	과제 6. 효율적인 국가 초고성능컴퓨팅 서비스 체계 구축
	과제 7. 수요기반 초고성능컴퓨팅 전문인력 육성
초고성능컴퓨팅	과제 8. 초고성능컴퓨팅 시스템 자체 개발 역량 확보
기술개발 산업화	과제 9. 차세대 초고성능 컴퓨팅 원천 기술 R&D 확대
촉진	과제 10. 초고성능컴퓨팅 관련 산업 기반 육성

자료: 제1차 국가초고성능컴퓨팅 육성 기본계획('13~'17)

슈퍼컴퓨팅 국내 현황

● 차세대 슈퍼컴퓨터(5호기) 도입과 자체개발에 대한 예비타당성 조사

제안시점 (금액)	세 부 내 용			
'13.12. (2,034억)	- 리더십 시스템 (1,103억 원), 플래그십 51PFlops 자체개발 (931억 원) ※ 자체개발의 위험도가 산재한 상태에서 리더십 시스템과 동일한 예산 편성은 부적절. 플래그십 시스템의 ARM기반 저전력 구성은 범용성이 확보되기 어려운 점을 고려해 재조정안 요구			
'15.02. (1,606.7억)	- 리더십 시스템 (1,103억 원), 플래그십 ARM & x86 (503억 원) ※ 플래그십 과제에서 ARM과 x86을 동일한 예산을 투입해서 구축하는 것이 부적절. 특히 쌍대비교(AHP)설문조사 결과 범용성이 높은 x86 시스템이 적절하기 때문에 재조정안 요구			
'15.05. (1,198억)	- 리더십 시스템 (1,103억 원) x86 프로토타입 (946억 원)	↓ 예비타당성 검토	- 리더십 시스템 (908억 원) x86 프로토타입 (82.7억 원) 총 990.8억원 규모	

- · 슈퍼컴퓨팅 자체개발 과제 예산안이 931억→503억→82.7억 원으로 감소한 주된 이유는 국내 기술력으로 차세대 슈퍼컴퓨터를 개발할 수 있는 가능성에 대한 위험 도가 매우 크다고 판단
- · 그러나 위험도가 문제라면 미국과 같이 국내 상황을 면밀히 판단하고 방향을 제시 하는 사전연구를 통해 위험도를 극복하는 전략 수립이 필수적

슈퍼컴퓨팅 국내 현황

- 국가 초고성능컴퓨팅 육성에 대한 노력
 - · 미래부는 매년 100억 원 씩 10년간 1,000억 원을 슈퍼컴퓨터 자체개발 사업에 투자를 계획
 - · 연구재단의 『차세대정보·컴퓨팅기술개발사업』에서 과제 추진

연 구 사 업	세 부 내 용	예 산	
PF급 이종 초고성능 컴퓨터 개발사업	- 초고성능컴퓨팅 핵심기술개발 로드맵 수립		
	- 국산화 대상 기술 선정 및 개발계획 마련	EN NO 04 91	
	- 산·학·연 등 국내외 개발 역량 결집 노력	50.96억 원	
	- 초고성능 핵심기술개발 재원확보 노력		
차세대정보·컴퓨팅 원천기술 개발사업 (시스템 SW 분야)	- 엑사스케일 초고속컴퓨팅 시스템을 위한 시스템 소프트웨어 원천기술 연구		
	- 초고성능컴퓨팅 환경을 위한 고효율 고신뢰 운영체제 기술 개발		
	- 이종 멀티코어 기반의 클라우드 상에서 프로그래머 생산성 및 퍼포먼스를 위한 엑사스케일	18억 원	
	빅 데이터 분석 플랫폼		
	- 매니코어 및 멀티코어 구조의 프로세서를 위한 선형대수 연산 패키지 개발		

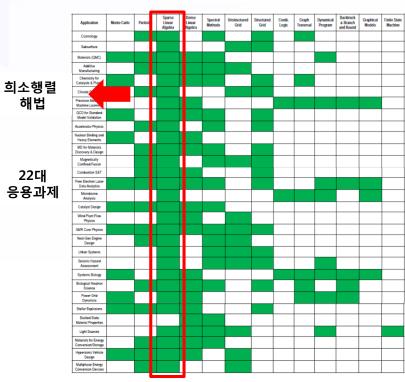
- · 지능정보산업 인프라 조성 사업, HPC기반이노베이션허브구축 사업 등 관련 사업 추진
- ・ 제2차 국가초고성능컴퓨팅 육성 기본계획 정책수립 조사 및 분석 (`17~)
 - 지능정보사회에서의 컴퓨팅 역량강화 방안 연구를 골자로 2차 계획 수립

국가 슈퍼컴퓨팅 역량 강화 방안

- 슈퍼컴퓨팅의 글로벌 트렌드는 엑사스케일 컴퓨팅 시스템 구축인 반면 국내 정책은 페타급 자체개발에 머물러 있는 실정
 - ·국제적인 동향이 엑사스케일이기 때문에 우리도 엑사스케일 컴퓨팅 역량 확보에 동참해야 한다는 논리는 국내의 실정을 고려하지 않음
 - 미국, 중국, 일본과 같은 슈퍼컴퓨팅 선진국에 비해 국내 연구진의 역량이 양적·질적으로 열악한 상황에서 슈퍼컴퓨터 개발에 대한 예산투입이 세계 최고를 지향해야 하는 것은 수용하기 어려움
 - 슈퍼컴퓨터는 단순히 HW 성능으로 판단할 수 있는 것이 아니고, 응용분야와 도전적 과제를 해결하기 위한 시스템SW 기술 역시 중요하므로 자체 기술력 확보를 계산성능에만 집착하여 판단하는 것은 지양해야 함
 - · 국내 전문가와 수준, 생태계를 전반적으로 점검하고 제한된 인적·물적 재원 안에서 자체기술 확보 전략을 구체화할 수 있는 정책 마련이 시급
 - 제2차 국가초고성능컴퓨팅 육성 기본계획에서는 미국의 엑사스케일 정책 진단 보고서와 같이 현실성 있는 정책 제안이 필요
 - ㆍ 결론적으로 국내 슈퍼컴퓨팅 역량 강화는 엑사스케일 컴퓨팅 시스템 개발과 같은 선도형 전략보다, 기존 기술을 추격하는 전략이 더 현실적

국가 슈퍼컴퓨팅 역량 강화 방안(1)

- 슈퍼컴퓨팅 기술의 단계별 국산화 달성과 최종 산출물로 슈퍼컴퓨터 전문기업 육성
 - ㆍ 광범위한 슈퍼컴퓨팅 요소 기술에서 우리의 위치를 객관적으로 파악할 필요
 - ㆍ자체개발에 대한 위험성을 낮추기 위해 국제적인 동향을 면밀히 파악하여 범용성이 가장 높은 시스템에서의 R&D 추진 중점
 - 예를 들면, 현재 슈퍼컴퓨터에서 가장 널리 활용되는 x86 시스템과 가속기 형태의 시스템에서 최적화 추진
 - ·국내의 모든 HPC 전문가가 하나의 거대 컨소시움 "(가칭) 국가 슈퍼컴퓨팅 연구단"을 구성하여 국가의 전략 프로젝트로서의 슈퍼컴퓨터 국산화 R&D 수행
 - 성공적인 기술 추격을 위해서는 산·학·연의 모든 HPC 전문가가 슈퍼컴퓨터 국산화 연구에 투입될 수 있는 환경 마련 (경쟁을 통한 과제선정보다 하나의 추진체계로 유기적으로 협업하는 방식이 더 적합)
 - ㆍ(가칭) 국가 슈퍼컴퓨팅 연구단은 최종 산출물로 슈퍼컴퓨터 전문기업 육성
 - 미국의 Cray, 일본의 Fujitsu와 같은 슈퍼컴퓨터 전문기업 육성 목표
 - ㆍ 향후 10년 간 기술 추격의 입장에서 슈퍼컴퓨팅 요소기술의 일부를 국제적인 수준으로 양성하고, 그 이후의 10년은 선도형 전략으로 전환


국가 슈퍼컴퓨팅 역량 강화 방안(2)

● 선택과 집중으로 슈퍼컴퓨터 특정 요소기술에 모든 역량을 투입하여 수치해석 알고리즘 선도형 전략으로 추진

해법

22대

- · 슈퍼컴퓨터의 요소기술은 대략적으로 10여개 내외로 구성되며, 응용분야를 포함하면 수 십 가지 기술로 세분화
- •예) 수치해석라이브러리 개발이라는 요소기술에 대해 모든 역량을 투입
 - 미국의 ECP에서 밝힌 에너지부 22대 응용과제의 수치해석 알고리즘 활용도에 따르면 21개의 과제에서 희소행렬 해법이 활용

● 이 전략의 추진은 국내 연구진의 기술 성숙도를 바탕으로 결정하는 것이 합리적이며, 선도형 기술 확보를 위해 과감한 투자가 필요

결 론

● 국내 전문가와 수준, 생태계를 전반적으로 점검하고 제한된 인적·물적 재원 안에서 자체기술 확보 전략을 구체화할 수 있는 정책 마련이 시급

● 미국의 Cray, 일본의 Fujitsu와 같은 슈퍼컴퓨터 전문기업 육성

● 선택과 집중으로 슈퍼컴퓨터 특정 분야에 모든 역량을 투입